
Comparison of Dimensionality Reduction
Schemes for Parallel Global Optimization

Algorithms

Konstantin Barkalov, Vladislav Sovrasov (�) and Ilya Lebedev

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
konstantin.barkalov@itmm.unn.ru

sovrasov.vlad@gmail.com

ilya.lebedev@itmm.unn.ru

Abstract. This work considers a parallel algorithms for solving multi-
extremal optimization problems. Algorithms are developed within the
framework of the information-statistical approach and implemented in
a parallel solver Globalizer. The optimization problem is solved by re-
ducing the multidimensional problem to a set of joint one-dimensional
problems that are solved in parallel. Five types of Peano-type space-filling
curves are employed to reduce dimension. The results of computational
experiments carried out on several hundred test problems are discussed.

Keywords: Global optimization · Dimension reduction · Parallel algo-
rithms · Multidimensional multiextremal optimization · Global search
algorithms · Parallel computations

1 Introduction

In the present paper, the parallel algorithms for solving the multiextremal op-
timization problems are considered. In the multiextremal problems, the oppor-
tunity of reliable estimate of the global optimum is based principally on the
availability of some information on the function known a priori allowing relat-
ing the probable values of the optimized function to the known values at the
points of performed trials. Very often, such an information on the problem being
solved is represented in the form of suggestion that the objective function ϕ(y)
satisfies Lipschitz condition with the constant L not known a priori (see, for ex-
ample, [16–18]). At that, the objective function could be defined by a program
code i. e. could represent a “black-box”-function. Such problems are presented in
the applications widely (problems of optimal design of objects and technological
processes in various fields of technology, problems of model fitting according to
observed data in scientific research, etc.).

Many methods destined to solving the problems of the class specified above
reduce the solving of a multidimensional problem to solving the one-dimensional
subproblems implicitly (see, for example, the methods of diagonal partitions
[14] or simplicial partitions [15]). In the present work, we will use the approach

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

124

2 K. Barkalov et al.

developed in Lobachevsky State University of Nizhni Novgorod based on the
idea of the dimensionality reduction with the use of Peano space-filling curves
y(x) mapping the interval [0, 1] of the real axis onto an n-dimensional cube
continuously and unambiguously.

Several methods of constructing the evolvents approximating the theoretical
Peano curve have been proposed in [2, 3, 7, 10]. These methods were implemented
in the Globalizer software system [13]. The goal of the present study was com-
paring the properties of the evolvents and the selecting the most suitable ones
for the use in the parallel global optimization algorithms.

2 Statement of Multidimensional Global Optimization
Problem

In this paper, the core class of optimization problems, which can be solved
using Globalizer, is formulated. This class involves the multidimensional global
optimization problems without constraints, which can be defined in the following
way:

ϕ(y∗) = min{ϕ(y) : y ∈ D},
D = {y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N}

(1)

with the given boundary vectors a and b. It is supposed, that the objective
function ϕ(y) satisfies the Lipschitz condition

|ϕ(y1)− ϕ(y2)| ≤ L‖y1 − y2‖, y1, y2 ∈ D, (2)

where L > 0 is the Lipschitz constant, and || · || denotes the norm in RN space.
Usually, the objective function ϕ(y) is defined as a computational procedure,

according to which the value ϕ(y) can be calculated for any vector y ∈ D (let
us further call such a calculation a trial). It is supposed that this procedure is
time-consuming.

3 Methods of Dimension Reduction

3.1 Single Evolvent

Within the framework of the information-statistical global optimization theory,
the Peano space-filling curves (or evolvents) y(x) mapping the interval [0, 1] onto
an N -dimensional hypercube D unambiguously are used for the dimensionality
reduction [1], [2], [4], [5].

As a result of the reduction, the initial multidimensional global optimization
problem (1) is reduced to the following one-dimensional problem:

ϕ(y(x∗)) = min{ϕ(y(x)) : x ∈ [0, 1]}. (3)

It is important to note that this dimensionality reduction scheme transforms
the Lipschitzian function from (1) to the corresponding one-dimensional function
ϕ(y(x)), which satisfies the uniform Hölder condition, i. e.

|ϕ(y(x1))− ϕ(y(x2))| ≤ H|x1 − x2|
1
N , x1, x2 ∈ [0, 1], (4)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

125

Dimension Reduction Schemes in Parallel GO 3

where the constant H is defined by the relation H = 2L
√
N + 3, L is the Lips-

chitz constant from (2), and N is the dimensionality of the optimization problem
(1).

The algorithms for the numerical construction of the Peano curve approxi-
mations are given in [5].

The computational scheme obtained as a result of the dimensionality reduc-
tion consists of the following:

– The optimization algorithm performs the minimization of the reduced one-
dimensional function ϕ(y(x)) from (3),

– After determining the next trial point x, a multidimensional image y is cal-
culated by using the mapping y(x),

– The value of the initial multidimensional function ϕ(y) is calculated at the
point y ∈ D,

– The calculated value z = ϕ(y) is used further as the value of the reduced
one-dimensional function ϕ(y(x)) at the point x.

3.2 Shifted Evolvents

One of the possible ways to overcome the negative effects of using a numerical
approximation of evolvent (it destroys the information about the neighbor points
in RN space, see [3]) consists in using the multiple mappings

YL(x) =
{
y0(x), y1(x), ..., yL(x)

}
(5)

instead of single Peano curve y(x) (see [3, 5, 9]).
Such set of evolvents can be produced by shifting the source evolvent y0(x)

by 2−l, 0 ≤ l ≤ L on each coordinate. Each evolvent has it’s own corresponding
hypercube Dl =

{
y ∈ RN : −2−1 ≤ yi + 2−l ≤ 3 · 2−1, 1 ≤ i ≤ N

}
, 0 ≤ l ≤ L.

In Fig. 1a the image of the interval [0, 1] obtained by the curve y0(x), x ∈
[0, 1], is shown as the dashed line. Since the hypercube D from (1) is included in
the common part of the family of hypercubesDl, having introduced an additional
constraint function

g0(y) = max
{
|yi| − 2−1 : 1 ≤ i ≤ N

}
, (6)

one can present the initial hypercube D in the form

D =
{
yl(x) : x ∈ [0, 1], g0(yl(x)) ≤ 0

}
, 0 ≤ l ≤ L,

i.e., g0(y) ≤ 0 if y ∈ D and g0(y) > 0 otherwise. Consequently, any point y ∈ D
has its own preimage xl ∈ [0, 1] for each mapping yl(x), 0 ≤ l ≤ L.

Thus, each evolvent yl(x), 0 ≤ l ≤ L, generates its own problem of the type
(1) featured by its own extended (in comparison with D) search domain Dl and
the additional constraint with the left hand part from (6)

min
{
ϕ(yl(x)) : x ∈ [0, 1], gj(y

l(x)) ≤ 0, 0 ≤ j ≤ m
}
, 0 ≤ l ≤ L. (7)

3.3 Rotated Evolvents

The application of the scheme for building the multiple evolvents (hereinafter
called the shifted evolvents or S-evolvents) described in Subsection 3.2 allows to

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

126

4 K. Barkalov et al.

1.5 1.0 0.5 0.0 0.5 1.0
y1

1.5

1.0

0.5

0.0

0.5

1.0

y 2

(a) Two shifted evolvents on the hyper-
cubes D0 and D1

0.50 0.25 0.00 0.25 0.50
y1

0.50

0.25

0.00

0.25

0.50

y 2

(b) Two rotated evolvents on the same
plane

Fig. 1. Multiple evolvents built with low density

preserve the information on the nearness of the points in the multidimensional
space and, therefore, to provide more precise (as compared to a single evolvent)
estimate of Lipschitz constant in the search process. However, this approach has
serious restrictions, which narrow the applicability of the parallel algorithms,
designed on the base of the S-evolvents (see the end of the section 5.1).

To overcome complexity of the S-evolvent and to preserve the information
on the nearness of the points in the N -dimensional space, one more scheme
of building of the multiple mappings was proposed. The building of a set of
Peano curves not by the shift along the main diagonal of the hypercube but by
rotation of the evolvents around the coordinate origin is a distinctive feature of
the proposed scheme [10]. In Fig. 1b two evolvents being the approximations to
Peano curves for the case N = 2 are presented as an illustration. Taking into
account the initial mapping, one can conclude that current implementation of
the method allows to build up to N(N − 1) + 1 evolvents for mapping the N -
dimensional domain onto the corresponding one-dimensional intervals. Moreover,
the additional constraint g0(y) ≤ 0 with g0(y) from (6), which arises in shifted
evolvents, is absent. This method for building a set of mappings can be “scaled”
easily to obtain more evolvents (up to 2N) if necessary.

3.4 Non-Univalent Evolvent

As it has been already mentioned above (Sec. 3.2), the loss of information on the
proximity of the points in the multidimensional space could be compensated in
part by the use of multiple mappings YL(x) = {y1(x), ..., yL(x)}. However, the
Peano-type curve preserves a part of this information itself: it is not an injective
mapping. Therefore, if a single image y(x) ∈ RN is available, one can obtain
several different preimages tj ∈ [0, 1], tj 6= x, which could be added into the
search information of the method later.

The Peano-type curve used in (3) for the dimensionality reduction is defined
via the transition to the limit. Therefore, it cannot be computed directly. In the

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

127

Dimension Reduction Schemes in Parallel GO 5

numerical optimization, some approximation of this curve is used, and it is an
injective piecewise-linear curve. In [2] a non-univalent mapping of a uniform grid
in the interval [0, 1] onto a uniform grid in a hypercube D has been proposed.
Each multidimensional node can have up to 2N one-dimensional preimages. In
Fig. 2b, the grid in the R2 space is marked by the crosses, for two nodes of which
the corresponding one-dimensional preimages from [0, 1] are pointed (marked by
the squares and circles). Each node mentioned above has 3 preimages.

A potentially large number of preimages (up to 2N) and the inability to use
the parallel scheme for the multiple mappings form Sec. 4.2 are the disadvantages
of the non-univalent evolvent.

3.5 Smooth Evolvent

The methods of constructing the evolvents considered in the previous para-
graphs produce the curve y(x), which in not a smooth one (see Fig. 1a). The
absence of smoothness may affect the properties of the reduced one-dimensional
function ϕ(y(x)) adversely since a smooth curve reflect the information on the
growth/decay of the initial function better. On the basis of initial algorithm
of constructing the non-smooth evolvent, a generalized algorithm allowing con-
structing a smooth space-filling curve has been proposed [7]. As an illustration,
a smooth evolvent for the two-dimensional case is presented in Fig. 2a. An in-
creased computational complexity (several times as compared to the piecewise-
linear curves) is a disadvantage of the smooth evolvent. This caused by comput-
ing of the nonlinear smooth functions.

0.50 0.25 0.00 0.25 0.50
y1

0.50

0.25

0.00

0.25

0.50

y 2

(a) Smooth evolvent

0.50 0.25 0.00 0.25 0.50
y1

0.50

0.25

0.00

0.25

0.50

y 2

0.0 0.2 0.4 0.6 0.8 1.0
x

(b) Non-univalent evolvent

Fig. 2. Different evolvents built with low density

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

128

6 K. Barkalov et al.

4 Parallel Computations for Solving Global Optimization
Problems.

4.1 Core Multidimensional Algorithm of Global Search (MAGS)

The optimization methods applied in Globalizer to solve the reduced problem
(3) are based on the MAGS method, which can be presented as follows — see
[2], [5].

The initial iteration of the algorithm is performed at an arbitrary point
x1 ∈ (0, 1). Then, let us suppose that k, k ≥ 1, optimization iterations have
been completed already. The selection of the trial point xk+1 for the next itera-
tion is performed according to the following rules.

Rule 1. Renumber the points of the preceding trials by the lower indices in
order of increasing value of coordinates 0 = x0 < x1 < ... < xk+1 = 1.

Rule 2. Compute the characteristics R(i) for each interval (xi−1, xi), 1 ≤ i ≤
k + 1.

Rule 4. Determine the interval with the maximum characteristic R(t) =
max1≤i≤k+1R(i).

Rule 5. Execute a new trial at the point xk+1 located within the interval with
the maximum characteristic from the previous step xk+1 = d(xt).

The stopping condition, which terminated the trials, is defined by the in-
equality ρt < ε for the interval with the maximum characteristic from Step 4
and ε > 0 is the predefined accuracy of the optimization problem solution. If
the stopping condition is not satisfied, the index k is incremented by 1, and the
new global optimization iteration is executed.

The convergence conditions and exact formulas for descision rules R(i) and
d(x) of the described algorithm are given, for example, in [5].

The numerical experiments, the results of which are presented in [19, 20]
demonstrate that the method, at least, is not worse than the well-known global
optimization algorithms DIRECT [16] and DIRECTl [17], and even overcome
these ones with respect to some parameters.

4.2 Parallel Algorithm Exploiting a Set of Evolvents

Using the multiple mapping allows solving initial problem (1) by parallel solving
the problems

min{ϕ(ys(x)) : x ∈ [0, 1]}, 1 6 s 6 S

on a set of intervals [0, 1] by the index method. Each one-dimensional problem
is solved on a separate processor. The trial results at the point xk obtained for
the problem being solved by particular processor are interpreted as the results
of the trials in the rest problems (in the corresponding points xk1 , . . . , xkS). In
this approach, a trial at the point xk ∈ [0, 1] executed in the framework of the
s-th problem, consists in the following sequence of operations.

1. Determine the image yk = ys(xk) for the evolvent ys(x).
2. Inform the rest of processors about the start of the trial execution at the

point yk (the blocking of the point yk).

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

129

Dimension Reduction Schemes in Parallel GO 7

3. Determine the preimages xks ∈ [0, 1], 1 6 s 6 S, of the point yk and
interpret the trial executed at the point yk ∈ D as the execution of the trials in
the S points xk1 , . . . , xks

4. Inform the rest of processors about the trial results at the point yk.

The decision rules for the proposed parallel algorithm, in general, are the
same as the rules of the sequential algorithm (except the method of the trial
execution). Each processor has its own copy of the software realizing the com-
putations of the problem functions and the decision rule of the index algorithm.
For the organization of the interactions among the processors, the queues are
created on each processor, where the processors store the information on the
executed iterations in the form of the tuples: the processor number s, the trial
point xks .

The proposed parallelization scheme was implemented with the use of MPI
technology. Main features of implementation consist in the following. A separate
MPI-process is created for each of S one-dimensional problems being solved,
usually, one process per one processor employed. Each process can use p threads,
usually one thread per an accessible core.

At every iteration of the method, the process with the index s, 0 6 s < S
performs p trials in parallel at the points x(s+iS), 0 6 i < p. At that, each process
stores all Sp points, and an attribute indicating whether this point is blocked by
another process or not is stored for each point. Let us remind that the point is
blocked if the process starts the execution of a trial at this point.

At every iteration of the algorithm, operating within the s-th process, deter-
mines the coordinates of p “its own” trial points. Then, the interchange of the
coordinates of images of the trial points y(s+iS), 0 6 i < p, 0 6 s < S is per-
formed (from each process to each one). After that, the preimages x(q+iS), 0 6
q < S, q 6= s of the points received by the s-th process from the neighbor ones are
determined with the use of the evolvent ys(x). The points blocked within the s-th
process will correspond to the preimages obtained. Then, each process performs
the trials at the non-blocked points, the computations are performed in parallel
using OpenMP. The results of the executed trials (the index of the point, the
computed values of the problem functions, and the attribute of unblocking of this
point) are transferred to all rest processes. All the points are added to the search
information database, and the transition to the next iteration is performed.

5 Results of Numerical Experiments

The computational experiments have been carried out on the Lobachevsky su-
percomputer at State University of Nizhni Novgorod. A computational node
included 2 Intel Sandy Bridge E5-2660 2.2 GHz processors, 64 GB RAM. The
CPUs had 8 cores (i. e. total 16 cores were available per a node). All considered
algorithms and evolvents were implemented using C++ within the Globalizer
software system [13]. In order to enable the parallelism, OpenMP was used on a
single node, and MPI was used for the parallelization on several nodes.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

130

8 K. Barkalov et al.

The comparison of the global optimization algorithms was performed by the
evaluation of the quality of solving a set of problems from some test class. In
the present paper, the test class generated by GKLS (Gaviano, Kvasov, Lera,
Sergeyev) generator [11] was considered. The generator creates objective func-
tions by distorting a convex quadratic function by polynomials in order to intro-
duce local minima. Thus, GKLS allows constructing the complex multiextremal
problems of various dimensions. In the present work, the series of 100 problems
from the classes of the dimensions of 2, 3, 4, and 5 were considered. Each class
had two degrees of complexity — Simple and Hard. These the classes have dif-
ferent radius of the attraction region of the global minimizer (Hard has smaller
region) and distance from the global minimizer to the vertex of the quadratic
function (Simple has smaller distance). The parameters of the generator for the
considered classes were given in Ref. [11].

In order to evaluate the efficiency of an algorithm on a given set of 100
problems, we will use the operating characteristics [12], which are defined as a
curve, showing the dependency of number of solved problems vs the number of
iterations.

5.1 Comparison of the Sequential Evolvents

In order to understand whether any type of evolvents listed above has an essential
advantage as compared to other ones, the operating characteristics of the index
method with different types of evolvents have been obtained for the classes GKLS
2d Simple and GKLS 3d Simple. The global minimum was considered to be found
if the algorithm generates a trial point yk in the δ-vicinity of the global minimizer,
i.e.

∥∥yk − y∗∥∥∞ ≤ δ. The size of the vicinity was selected as δ = 0.01 ‖b− a‖∞.
In case of GKLS δ = 0.01.

In all experiments, the evolvent construction density parameter m = 12. The
minimum value of the reliability parameter r was found for each type of evolvents
by scanning over a uniform grid with the step 0.1.

On the GKLS 2d Simple class at the minimum r, the non-univalent evolvent
and the smooth one provide a faster convergence (Fig. 3b). The same was ob-
served at r = 5.0 as well (Fig. 3a). In the latter case, the shifted evolvent and
the rotating one begin to lag behind the rest since the value r = 5.0 is too big
for them.

On the GKLS 2d Simple class at the minimum r, the non-univalent evol-
vents and multiple ones have a considerable advantage over the single evolvent
(Fig. 4b). The value r = 4.5 is too big for the rotated evolvents and for the
shifted one (Fig. 4a).

Overhead costs when using the shifted evolvents. In all experiments presented
above, the number of computations of the objective function from the GKLS class
was taken into account when plotting the operating characteristics. However, in
the case of the shifted evolvent, the index method solves the problem with the
constraint g0 from (6). At the points where g0 is violated, the value of the
objective function is not computed. Nevertheless, these points are stored in the

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

131

Dimension Reduction Schemes in Parallel GO 9

0 500 1000 1500 2000
K

0.0

0.2

0.4

0.6

0.8

1.0

P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

Shifted L= 4

Smooth

(a) r = 5.0

0 200 400 600 800 1000 1200 1400
K

0.0

0.2

0.4

0.6

0.8

1.0

P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

Shifted L= 4

Smooth

(b) Minimal r

Fig. 3. Operating characteristics on GKLS 2d Simple class

0 5000 10000 15000 20000 25000
K

0.0

0.2

0.4

0.6

0.8

1.0

P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

(a) r = 4.5

0 2000 4000 6000 8000 10000 12000 14000 16000
K

0.0

0.2

0.4

0.6

0.8

1.0
P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

(b) Minimal r

Fig. 4. Operating characteristics on GKLS 3d Simple class

search information producing the additional computational costs. In Table 1,
the averaged numbers of calls to g0 and to the objective function are presented.
At L = 3, the constraint g0 was computed almost 20 times more than the
objective function ϕ i. e. 95% of the whole search information account for the
auxiliary points. Such overhead costs are acceptable when solving the problems of
small dimension with the computation costly objective functions. However, when
increasing dimensionality and total number of trials other types of evolvents are
preferred.

5.2 Parallel Rotated Evolvents

In order to evaluate the efficiency of the parallel algorithm from Sec. 4.2, the
numerical experiments on the GKLS 4d (Hard, Simple) classes and on the GKLS
5d (Hard, Simple) ones were conducted. The value of r in all experiments was
equal to 5.0, the size of the δ-vicinity of the known solution was increased up

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

132

10 K. Barkalov et al.

Table 1. Averaged number of computations of g0 and of ϕ when solving the
problems from GKLS 3d Simple class using the shifted evolvent

L calc(g0) calc(ϕ) calc(g0)
calc(ϕ)

ratio

2 96247.9 6840.14 14.07

3 153131.0 7702.82 19.88

to 0.3. When solving the series of problems, up to 8 cluster nodes and up to 32
computational threads on each node were employed.

In Table 2, an averaged number of iterations when solving 100 problems
from each considered class is presented. The number of iterations is reduced
considerably with increasing the number of nodes and the number of threads on
each node (except the GKLS 4d Simple class at the transition from 1 node to 4
ones in the single thread mode).

Table 2. Averaged numbers of iterations executed by the parallel algorithm for
solving the test optimization problems

p N = 4 N = 5

Simple Hard Simple Hard

I 1 cluster node 1 12167 25635 20979 187353

32 328 1268 898 12208

II 4 cluster nodes 1 25312 11103 1472 17009
32 64 913 47 345

III 8 cluster nodes 1 810 4351 868 5697
32 34 112 35 868

If one assumes the costs of parallelization to be negligible as compared to
the costs of computing the objective functions in the optimization problems,
the speedup in time due to the use of the parallel method would be equal to
the speedup with respect to the number of iterations. However, actually this
suggestion is not always true. In all numerical experiment the time of computing
the objective function was approximately 10−3 sec. In Table 3, the speedups in
iterations and in time (in the pendent brackets) are presented. In the first row of
the table corresponding to the sequential mode, the averaged time of solving a
single problem is presented in the pendent brackets. One can see from the table
that for the GKLS 4d classes it is more efficient to utilize a single node in the
multithread mode whereas for solving more complex five-dimensional problems,
the use of several nodes is better, each node is operating in the parallel mode.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

133

Dimension Reduction Schemes in Parallel GO 11

Table 3. Speedup of parallel computations executed by the parallel algorithm

p N = 4 N = 5

Simple Hard Simple Hard

I 1 cluster node 1 12167(10.58s) 25635(22.26s) 20979(22.78s) 187353(205.83s)

32 37.1(18.03) 20.2(8.55) 23.3(8.77) 15.4(9.68)

II 4 cluster nodes 1 0.5(0.33) 2.3(0.86) 14.3(6.61) 11.0(6.06)
32 190.1(9.59) 28.1(1.08) 446.4(19.79) 543.0(43.60)

III 8 cluster nodes 1 15.0(6.05) 5.9(2.36) 24.2(17.56) 32.9(24.87)
32 357.9(2.36) 228.9(2.64) 582.8(20.96) 793.0(33.89)

6 Conclusions

In the present work, 5 different Peano curve-type mappings applied to the dimen-
sionality reduction in the global optimization problems were considered. From
the preliminary comparison conducted in Sec. 5.1, one can make the following
conclusions:

– the smooth evolvent and the non-univalent one demonstrate the best re-
sult in the problems of small dimensionality and can be applied successfully
in solving the problems with the computational costly objective functions.
The properties of these evolvents don’t allow developing the optimization
algorithms scalable onto several cluster nodes based on these ones.

– the shifted evolvents introduce large overhead costs on the operation of the
method due to the requirement to adding an auxiliary functional constraint
into the problem (1). The experiments have demonstrated that up to 95%
of the search information account for the points, in which the auxiliary con-
straint is computed only. The shifted evolvents can be used as the base for
the parallel algorithm from Sec. 4.2. However, the costs of processing the
auxiliary points would result likely in a small speedup from the paralleliza-
tion. However, if the objective function is computation-costly enough, the
use of these evolvents could make sense.

– the rotated evolvents have provided an acceptable speed of convergence in
the problems of small dimensionality in the sequential mode. The use of
these ones don’t result in the introduction of the auxiliary constraints that
allows constructing an efficient parallel algorithm based on these evolvents.

In Sec. 5.2 the results of the numerical experiments are presented, which have
demonstrated the algorithm from Sec. 4.2 based on the rotated evolvents allowed
obtaining the speedup up to 43 times when solving the problem series employing
several nodes of the computer cluster. It is worth noting that the objective
functions in the considered problems are not computation-costly (the averaged
computation time was 10−3 sec). In the case of more complex problems,the
speedup in time could approach the speedup with respect to the number of
iterations.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

134

12 K. Barkalov et al.

Acknowledgements

The study was supported by the Russian Science Foundation, project No 16-11-
10150

References

1. Y. D. Sergeyev, R. G. Strongin and D. Lera, Introduction to Global Optimization
Exploiting Space-filling Curves, Springer (2013)

2. R. G. Strongin, Numerical Methods in Multi-Extremal Problems (Information-
Statistical Algorithms), Moscow: Nauka (1978) (In Russian)

3. R. G. Strongin, Algorithms for multi-extremal mathematical programming prob-
lems employing a set of joint space-filling curves, J. Glob. Optim., 2, 357–378
(1992)

4. R. G. Strongin, V. P. Gergel, V. A. Grishagin and K. A. Barkalov, Parallel Com-
putations for Global Optimization Problems, Moscow State University, Moscow
(2013) (In Russian)

5. R. G. Strongin and Y. D. Sergeyev, Global Optimization with Non-convex Con-
straints. Sequential and Parallel Algorithms, Kluwer Academic Publishers, Dor-
drecht (2000, 2nd ed. 2013, 3rd ed. 2014)

6. A. Törn and A. Žilinskas, Global Optimization, Springer, (1989)
7. Goryachih, A. A class of smooth modification of space-filling curves for global

optimization problems Springer Proceedings in Mathematics and Statistics, 197,
pp. 57–65 (2017)

8. A. A. Zhigljavsky, Theory of Global Random Search, Kluwer Academic Publishers,
Dordrecht (1991)

9. Strongin, R.G.: Parallel multi-extremal optimization using a set of evolvents.
Comp. Math. Math. Phys. 31(8), 37–46 (1991)

10. Strongin, R.G., Gergel, V.P., Barkalov, K.A.: Parallel methods for global opti-
mization problem solving. Journal of instrument engineering. 52, 25–33 (2009)
(In Russian)

11. Gaviano, M., Kvasov, D.E, Lera, D., and Sergeyev, Ya.D.: Software for generation
of classes of test functions with known local and global minima for global optimiza-
tion. ACM Transactions on Mathematical Software 29(4), 469–480 (2003)

12. Grishagin, V.A.: Operating Characteristics of Some Global Search Algorithms.
Problems of Statistical Optimization 7, 198–206 (1978) (In Russian)

13. Gergel V.P., Barkalov K.A., and Sysoyev A.V: Globalizer: A novel supercomputer
software system for solving time-consuming global optimization problems. Numer-
ical Algebra, Control & Optimization 8(1), 47–62 (2018)

14. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth
diagonal auxiliary functions. Communications in Nonlinear Science and Numerical
Simulation. 21(1-3), 99–111 (2015)

15. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lips-
chitz constant. J. Glob. Optim. 59(1), 23–40 (2014)

16. Jones, D.R.: The direct global optimization algorithm. In: Floudas, C.A., Parda-
los, P.M. (eds.) The Encyclopedia of Optimization, 2nd edn., pp. 725–735.
Springer, Heidelberg (2009)

17. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm.
J. Glob. Optim., 21(1), 27–37 (2001)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

135

Dimension Reduction Schemes in Parallel GO 13

18. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained
optimization. Optim. Lett. 7(4), 819–829 (2013)

19. Gergel V. and Lebedev I. Heterogeneous Parallel Computations for Solving Global
Optimization Problems. Proc. Comput. Science 66, pp. 53–62 (2015)

20. Gergel V., Sidorov S. A Two-Level Parallel Global Search Algorithm for Solution
of Computationally Intensive Multiextremal Optimization Problems. Lect. Notes
Comput. Science 9251, pp. 505–515 (2015)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

136

