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Abstract. The paper describes a design method of parallel programs
for numerical algorithms based on their representation in the form of
Q-determinant. The result of the method is Q-e�ective program. It uses
the parallelism resource of the algorithm completely. The results of this
research can be applied to increase the implementation e�ciency of algo-
rithms on parallel computing systems. This should help to improve the
performance of parallel computing systems.
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1 Introduction

The development of parallel computing systems has the history for decades,
but the implementation e�ectiveness of algorithms remains low on those. That
problem can be solved by using parallelism resource of algorithms completely.
The conception of Q-determinant [1] allows to detect the parallelism resources of
numerical algorithms. The basis of the conception is the universal description of
algorithms. This is the algorithms representation in the Q-determinant form. All
of the algorithm implementation are described by Q-determinant, including the
Q-e�ective one. The Q-e�ective implementation uses the parallelism resource of
the algorithm completely. From a formal point of view that is the most rapid
implementation. The description of the method of designing a parallel program
for the Q-e�ective implementation of numerical algorithm is the aim of this
paper. The concept of the Q-determinant has been theoretical development and
used to study the resource of algorithm parallelism in the papers [2,3,4,5,6]. This
conception for the design of parallel program is o�ered for the �rst time.

The investigation of parallel structure of algorithms and programs is very
important and highly developed for their implementation on parallel computer
systems. The basis of research is described in [7,8]. Representations by graphs
are used for a description of parallel algorithms. The Internet encyclopedia Algo-
Wiki [9] is created nowadays. The encyclopedia describes the features, peculiar
properties, static and dynamic characteristics of the algorithms. This help to
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implement algorithms e�ectively. In the report [10] there is the current state
of researches of parallelization algorithms and their implementations on paral-
lel computing systems. The report contains the formulations of some problems.
Here are some of these problems. How to represent a potentially in�nite graph?
How to represent a potentially multi-dimensional graph? How to show depen-
dence graph structure on the size of the tasks? How to express the available
parallelism and show a�ordable way of the parallel execution? The conception
of Q-determinant gives answers for these questions. This research contains one
of the answers to the last question.

There are many studies, in which the speci�c nature of algorithms and the
architecture of parallel computing systems take into account for the development
of parallel programs. Examples of such studies are [11,12,13]. The e�ciency of
implementing speci�c algorithms or implementing algorithms on parallel com-
puting systems of a particular architecture is increased in cases of those studies.
However, they do not provide general universal approach. The parallel program
synthesis is other approach to creating parallel programs also. The synthesiz-
ing parallel programs method is to construct new parallel algorithms using the
knowledge base of parallel algorithms for solving more complex problems. The
technology of fragmented programming and its implementing language and pro-
gramming system LuNA are developed on the base of synthesizing parallel pro-
gramming method. This direction of research is developing [14,15] at present
time. The approach is universal, but it does not solve the problem of research
and use of the algorithm parallelism resource. The investigation of the paral-
lelism resource of algorithms is provided using their software implementation
[16]. If you want to solve the problem of determining the parallelism resource of
algorithm, then use of any program implementing of algorithm may be wrong
because that program can not contain all implementations of the algorithm. In
particular, the Q-e�ective implementation can be lost under program creation.
We can notice that the analysis of the existing approaches of problem solution of
studying the parallelism resource of algorithm and its implementation on parallel
computing systems shows they are inapplicable, or ine�ective, or non-generic.
The approach is perspective if it is based on the universal description of the
algorithm showing the parallelism resource in full. For example, such approach
is an approach on the base of the Q-determinant concept.

2 Q-determinant of Algorithm

Let A be an algorithm for solving an algorithmic problems ȳ = F (N,B), where
N is a set of dimension parameters of the problem, B is a set of input data,
ȳ = (y1, . . . , ym) is a set of output data, yi /∈ B (i = 1, . . . ,m),m is a computable
function parameters N on condition N 6= ∅ or constant.

The set N satis�es the conditions: N = ∅, or N = {n1, . . . , nk}, where k > 1,
ni (1 6 i 6 k) are every positive integers. If N = {n1, . . . , nk} then we denote
vector (n̄1, . . . , n̄k), where n̄i is some assigned value of parameter ni (1 6 i 6 k)
by N̄ . We denote by

{
N̄
}
the set N̄ of possible vectors.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

172



Let is Q a set of operations those are used by algorithm A. Assume that the
operations of Q are 0-ary (constant), unary or binary. An example of a set Q is
a set of arithmetic, logic operations and comparison operations. The expressions
can be formed by sets B and Q. We call chain an expression that obtained from
the n expressions with the help of use of n−1 times one of associative operations
of Q.

One of the basic notions of Q-determinant conception is Q-term.
De�nition of Q-term:

1. If N = ∅ then unconditional Q-term is called every expression w over B and
Q (term of signature Q). Let V be a set of all expressions over B and Q. If
N 6= ∅ then every map w :

{
N̄
}
→ V is called unconditional Q-term also.

2. Let N = ∅ and be given an unconditional Q-term w. Let under each inter-
pretation of B the expression w over B and Q have a logical type value. Then
unconditional Q-term w is called unconditional logical Q-term. Let N 6= ∅
and be given an unconditional Q-term w :

{
N̄
}
→ V . Let be an expression

w(N̄) for every N̄ ∈ {N̄} have logical type value under each interpretation
of B. Then unconditional Q-term w is called unconditional logical Q-term.

3. Let u1, . . . , ul be an unconditional logical Q-terms. w1, . . . , wl are an un-
conditional Q-terms. We denote the set of pairs (ui, wi) (i = 1, . . . , l) as
(ū, w̄) = {(ui, wi)}i=1,...,l and call conditional Q-term of length l.

4. Assume we have a countable set of pairs unconditional Q-terms (ū, w̄) =
{(ui, wi)}i=1,2,... such that {(ui, wi)}i=1,...,l is conditional Q-term for each
l <∞ then we call it conditional in�nite Q-term.

5. If it does not matter whether the Q-term unconditional, conditional or con-
ditional in�nite then we call it Q-term.

Q-terms can be calculated.
We mean by the calculation of unconditional Q-term w under each interpre-

tation of B as the calculation of the expression of w if N = ∅ and the calculation
of the expression of w(N̄) for some N̄ ∈ {N̄} if N 6= ∅.

We describe the calculation of conditional Q-term (ū, w̄) = {(ui, wi)}i=1,...,l

under any interpretation of B. If N = ∅ is necessary to calculate the expressions
ui, wi (i = 1, . . . , l). If there are expressions of ui0 , wi0 (i0 6 l) such that ui0

takes the value true and the value of wi0 is determined we will set (ū, w̄) taking
value is equal to wi0 . Also we assume the value of (ū, w̄) for this interpretation
B is not determined otherwise. If N 6= ∅ then we set value N̄ ∈ {N̄}. We
obtain the expressions ui(N̄), wi(N̄) (i = 1, . . . , l) and calculate them. If there
are expressions of ui0(N̄), wi0(N̄) (i0 6 l) such that ui0(N̄) takes the true and
the value of wi0(N̄) is determined we will set (ū, w̄) taking value is equal to
wi0(N̄). Also we assume the value of (ū, w̄) is not determined for given N̄ and
interpretation of B otherwise.

We describe for given interpretation of B the calculation of conditional in�-
nite Q-term (ū, w̄) = {(ui, wi)}i=1,2,.... If N = ∅ it is necessary to �nd ui0 , wi0

such that ui0 is set to true and the value of wi0 is determined. Then wi0 is
the value of (ū, w̄). If we have no such expressions ui0 , wi0 the value of (ū, w̄) is
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not determined for this interpretation B. Similarly, we can de�ne calculation of
conditional in�nite Q-term in the case of N 6= ∅.

Suppose that I1, I2, I3 are subsets of the set I = (1, . . . ,m), satisfying the
following conditions:

1. I1 ∪ I2 ∪ I3 = I;
2. Ii ∩ Ij = ∅ (i 6= j; i, j = 1, 2, 3);
3. One or two subsets Ii (i = 1, 2, 3) may be empty.

We consider the set of Q-terms {fi}i∈I such that:

1. fi1 (i1 ∈ I1) is an unconditional Q-term, fi1 = wi1 ;
2. fi2 (i2 ∈ I2) is conditional Q-term, fi2 =

{(
ui2
j , wi2

j

)}
j=1,...,li2

, li2 is either

constant or computable function of parameters N for N 6= ∅;
3. fi3 (i3 ∈ I3) is a conditional in�nite Q-term, fi3 =

{(
ui3
j , wi3

j

)}
j=1,2,...

.

Suppose that the algorithm A is that Q-term fi should be computed in order
that yi (i ∈ I) evaluates. Then the set of Q-terms fi (i ∈ I) is called a Q-
determinant of algorithm A and presentation of algorithm in the form yi = fi
(i ∈ I) is called a presentation of the algorithm in the form of Q-determinant.
Every numerical algorithm can be represented in the form Q-determinant.

3 Q-e�ective Implementation of Algorithm

Let A be an algorithm in the form of Q-determinant yi = fi (i ∈ I). The process
of calculating the Q-terms fi (i ∈ I) is called an implementation of the algorithm
A. If the implementation of the algorithm is such that two or more operations
are performed simultaneously, it will be called a parallel implementation. We
describe a realization algorithm A represented in the form of Q-determinant.

Let N = ∅. We specify the variable interpretation of B. Expressions

W =
{
wi1(i1 ∈ I1);ui2

j , wi2
j (i2 ∈ I2, j = 1, . . . , li2);

ui3
j , wi3

j (i3 ∈ I3, j = 1, 2, . . . )
}

(1)

will be calculated at the same time (in parallel). We say that the operation is
ready to perform if you have calculated the value of its operands already. In
calculating each of the expressions W we perform the operations as soon as they
are ready to perform.

If you are ready to perform several operations chain, they are calculated
by doubling scheme. For example, the doubling scheme of calculating the chain
a1+a2+a3+a4 is the following. First, we calculate b1 = a1+a2 and b2 = a3+a4
simultaneously, after that we calculate c = b1 + b2.

If we obtain false value for some expression ui
j (i ∈ I2 ∪ I3, j = 1, 2, . . . )

the calculation of the corresponding expression of wi
j comes to an end. If the

calculation of some pair of expressions (ui
j , w

i
j) (i ∈ I2 ∪ I3, j = 1, 2, . . . ) implies
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that the value of one of the expressions is not de�ned then the calculation of
other expression is terminated. If the calculation of some pair of expressions
(ui

j0
, wi

j0
) (i ∈ I2 ∪ I3) �nds that their values de�ne and ui

j0
is set to true,

the calculation of expressions ui
j , w

i
j (i ∈ I2 ∪ I3, j = 1, 2, . . . ; j 6= j0) stops.

Calculation the identical expressions of ui
j , w

i
j (i ∈ I3, j = 1, 2, . . . ) and their

identical subexpressions may not duplicate.
Let N be nonempty. We de�ne N̄ ∈ {N̄} and the interpretation of the vari-

ables of B . We get the set of expressions

W (N̄) =
{
wi1(N̄)(i1 ∈ I1);ui2

j (N̄), wi2
j (N̄)(i2 ∈ I2, j = 1, . . . , li2);

ui3
j (N̄), wi3

j (N̄)(i3 ∈ I3, j = 1, 2, . . . )
}
. (2)

Expressions W (N̄) can be calculated by analogy with the expressions W .
Described implementation of the algorithm A will be called Q-e�ective. We

say that the implementation of the algorithm A is realizable, if �nite number of
operations needed to be performed simultaneously.

4 The Method of Parallel Program Design for the

Q-e�ective Implementation of Algorithm

Q-determinants can be constructed for any numerical algorithm. Q-determinant
allows us to describe Q-e�ective implementation of the algorithm. If Q-e�ective
implementation of the algorithm is realizable it can be programmed directly. You
can develop a sequential program using a �ow chart of a numerical algorithm.
Also you can develop a parallel program using the Q-determinant of a numerical
algorithm. This idea is the basis of the proposed method. The model of the Q-
determinant concept allows us to investigate machine-independent properties of
algorithms just only. The basic model of the Q-determinant concept is expanded
to take into account the features of implementing algorithms on real parallel
computing systems. The extended model of the Q-determinant concept obtained
by adding model of parallel computing PRAM [17] for shared memory and BSP
[18] for distributed memory. We proposed the method of parallel program design
for the Q-e�ective implementation of the algorithm that is based on the extended
model of the Q-determinant concept.

The method consists of the following stages.

1. Construction of Q-determinant of algorithm.
2. Description of Q-e�ective implementation of algorithm.
3. If Q-e�ective implementation is realizable then a parallel program is devel-

oped for it.

The program will be called Q-e�ective if it is designed with the help of this
method. Q-e�ective program uses the parallelism resource of algorithm com-
pletely because it performs a Q-e�ective implementation of the algorithm. So, it
has most high parallelism among the programs implement the algorithm. For this
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reason the Q-e�ective program uses the resources of the computing system more
e�cient than the programs perform other implementations of the algorithm. A
Q-e�ective program can be used parallel computing systems with shared and
distributed memory. We show the use of this method for modeling algorithms,
which have Q-determinants that consist of Q-terms of various types. First, con-
sider the �rst two stages of the method.

The algorithm of matrix multiplication

Stage 1. Consider the algorithm of multiplication of matrices

A = [aij ]i=1,...,n;j=1,...,k and B = [bij ]i=1,...,k;j=1,...,m. (3)

The result is matrix C = [cij ]i=1,...,n;j=1,...,m, where cij =
∑k

s=1 aisbsj .
The algorithm of matrix multiplication can be presented in the form of Q-
determinant. Q-determinant is composed of nm unconditional Q-terms.

Stage 2. Q-e�ective implementation of the algorithm for multiplication of
the matrices is that all of Q-terms

∑k
s=1 aisbsj(i = 1, . . . , n; j = 1, . . . ,m) are

calculated simultaneously. First, all multiplication operations should are ready
to perform, so they need to be performed simultaneously. The result will nm
chains formed by the operation addition. Each chain is calculated by doubling
scheme. So, Q-e�ective implementation of the algorithm for multiplication of
matrices is realizable.

Gauss�Jordan method of solving of linear equation systems

Stage 1. Gauss-Jordan method of solving linear equation systems Ax̄ = b̄
can be applied to each dimension. For simplicity, we assume that A = [aij ] is
a matrix of dimension n × n with a nonzero determinant. x̄ = (x1, . . . , xn)T ,
b̄ = (a1,n+1, . . . , an,n+1)T has a column-vectors, Ā is augmented matrix of the
system. We construct Q-determinant method of Gauss-Jordan.

Gauss-Jordan method consists of n steps.
Step 1.

We select element a1j1 with properties a11 if a11 6= 0 otherwise a1j = 0
for j < j1 6 n and a1j1 6= 0 as leading element. We get augmented matrix

Āj1 = [aj1ij ], whose elements are calculated by rules

aj11j =
a1j
a1j1

, aj1ij = aij −
a1j
a1j1

aij1(i = 2, . . . , n; j = 1, . . . , n + 1). (4)

Step k (2 6 k 6 n).
We get augmented matrix Āj1...jk−1 after we made the step (k−1). We select

element a
j1...jk−1

kjk
with properties a

j1...jk−1

k1 if a
j1...jk−1

k1 6= 0 otherwise a
j1...jk−1

kj = 0

for j < jk 6 n and a
j1...jk−1

kjk
6= 0 as leading element. We get augmented matrix

Āj1...jk = [aj1...jkij ]i=1,...,n;j=1,...,n+1 , whose elements are calculated by the rules

aj1...jkkj =
a
j1...jk−1

kj

a
j1...jk−1

kjk

, aj1...jkij = a
j1...jk−1

ij −
a
j1...jk−1

kj

a
j1...jk−1

kjk

a
j1...jk−1

ijk

(i = 1, . . . , n; i 6= k; j = 1, . . . , n + 1). (5)
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We get system of equations Aj1...jn x̄ = b̄j1...jn after step n, where

Aj1...jn = [aj1...jnij ]i=1,...,n;j=1,...,n, b̄
j1...jn = (aj1...jn1,n+1 , . . . , a

j1...jn
n,n+1)T . (6)

We denote by

Lj1 =

j1−1∧
j=1

(a1j = 0) if j1 6= 1, Lj1 = true if j1 = 1, (7)

Ljl =

jl−1∧
j=1

(a
j1...jl−1

lj = 0) if jl 6= 1, Ljl = true if jl = 1 (l = 2, . . . , n). (8)

Permutations of elements (1, . . . , n) may be numbered. Let i be a number of
permutation (j1, . . . , jn). Then the terms

wjl
i = aj1...jnl,n+1 (l = 1, . . . , n), (9)

ui = Lj1 ∧ (a1j1 6= 0) ∧

(
n∧

l=2

(
Ljl ∧

(
a
j1...jl−1

ljl
6= 0
)))

(10)

are unconditional Q-terms.
Q-determinant of Gauss�Jordan method consists of n conditional Q-terms

and

xj = {(u1, w
j
1), . . . , (un!, w

j
n!)}(j = 1, . . . , n) (11)

is the representation in the form of Q-determinant.
Stage 2. By the de�nition of Q-e�ective implementation all unconditional

Q-terms {ui, w
j
i }(i=1, . . . , n!; j=1, . . . , n) should be calculated simultaneously.

Therefore, two computational process should be carried out at the same time:
parallel calculation of matrices Āj1 , Āj1j2 , . . . , Āj1j2...jn for all possible values
of the numbers j1, j2, . . . , jn, as well as a parallel calculation of the Q-terms
ui(i=1, . . . , n!). The leading elements of the matrix for each step of the algorithm
are determined in the calculation of Q-terms ui(i=1, . . . , n!) successively. Calcu-
lation of matrices Āj1 , Āj1j2 , . . . , Āj1j2...jn stops if they do not correspond to the
leading elements. The �rst cycle of calculations is as follows. We begin to calcu-
late the matrices Āj1 and Q-terms ui(i = 1, . . . , n!) simultaneously. The calcula-
tions ui(i=1, . . . , n!) start with the subexpressions Lj1 ∧ (a1j1 6= 0)(j1=1, . . . , n),
because only their operations are ready for execution. Only one of the subexpres-
sions Lj1 ∧ (a1j1 6= 0) will be set to true. Let r1 be a value of j1. Further we end
calculating Āj1(j1 = 1, . . . , n) and ui(i = 1, . . . , n!) under the condition that j1 is
not equal r1. We compute the matrices Ār1j2(j2 = 1, . . . , n; j2 6= r1) and Q-terms
ui(i = 1, . . . , n!) to j1 = r1 in the second cycle of calculations simultaneously. In
the calculation of ui(i = 1, . . . , n!) one should be calculated only subexpression
Lj2∧(ar12j2 6= 0)(j2 = 1, . . . , n; j2 6= r1) so as soon as their operations are ready for
execution. Only one of the subexpressions Lj2∧(ar12j2 6= 0)(j2 = 1, . . . , n; j2 6= r1)

will be set to true. Let r2 be a value of j2. Further, the calculating Ār1j2(j2 =
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1, . . . , n; j2 6= r1) and ui(i = 1, . . . , n!) to j2 6= r2 is stop. The following n − 3
cycles of calculations are executed similarly. In conclusion, you need to calculate
a single matrix Ār1...rn−1jn(jn 6= r1, r2, . . . , rn−1) as the parameter jn has single
value. Let rn be a value of jn. The result is xrj = ar1...rnj,n+1 (j = 1, . . . , n) that is
the solution of original system of linear equations. Q-e�ective implementation of
the method of Gauss-Jordan is realizable.

Jacobi method of solving a system of linear equations

Stage 1. We construct Q-determinant of the Jacobi method of solving a
system of linear equations Ax̄ = b̄, where A = [aij ]i,j=1,...,n, aii 6= 0 (i =
1, . . . , n), x̄ = (x1, . . . , xn)T , b̄ = (a1,n+1, . . . , an,n+1)T . We denote as cij = −aij

aii

and di = bi
aii

. Let x̄0 be an initial approximation. Then the iteration process can

be written as xk+1
i =

∑
j=1,...,n;j 6=i cijx

k
j + di(i = 1, . . . , n; k = 0, 1, . . . ). The

criterion of the iterative process ending is the condition ||x̄k+1− x̄k|| < ε. There
ε is the calculation precision.
Q-determinant of the Jacobi method consists of n conditional in�nite Q-terms.
Presentation of the Jacobi method in the form of Q-determinant is written as

xi = {(||x̄1 − x̄0|| < ε, x1
i ), . . . , (||x̄k − x̄k−1|| < ε, xk

i ), . . . }(i = 1, . . . , n). (12)

Stage 2. We denote ul = ||x̄l − x̄l−1|| < ε(l = 1, 2, . . . ) that simpli�es
the description of Q-e�ective implementation. Then the Q-determinant has the
form xi = {(u1, x1

i ), (u2, x2
i ), . . . , (uk, xk

i ), . . . }(i = 1, . . . , n). All unconditional
Q-terms {ul, xl

i}(i = 1, . . . , n; l = 1, 2, . . . ) by the de�nition of Q-e�ective imple-
mentation should be calculated simultaneously. At �rst Q-terms x1

i (i = 1, . . . , n)
should be calculated simultaneously. Then Q-terms u1, x2

i (i = 1, . . . , n) are cal-
culated simultaneously. If the value of u1 is true then the calculation should be
�nished. In this case xi = x1

i (i = 1, . . . , n) is the solution of system of linear
equations. If the computation will continue the Q-terms uk, xk+1

i (i = 1, . . . , n)
are calculated at the same time for any value of k > 2. If the value of uk is
true then the calculation should be �nished. In this case xi = xk

i (i = 1, . . . , n)
is the solution of system of linear equations. So, Q-e�ective implementation of
the method of Jacobi is realizable.

Stage 3 of our proposed method is a parallel program development for
the Q-e�ective implementation of the algorithm. To make this we should be
used for parallel programming tools. We use a description of the Q-e�ective
implementation of the algorithm for developing a Q-e�ective program for shared
memory. The description of the Q-e�ective implementation of the algorithm
should be supplemented with a description of the distribution of computation by
computing nodes for development ofQ-e�ective program for distributed memory.
If we use distributed memory computing research is limited by a principle of a
�master-slaves�. That principle is used on cluster computing systems often. The
principle can be described as follows. To compute we use node M (Master) and
several computing nodes S (Slave). The computational process is divided into
several steps.
Step 0. Initialization.
Step 1. Make a task from the node M to all nodes of S.
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Step 2. Make the calculating on the each node of S without exchanges with other
nodes.
Step 3. Sending the results of all the nodes S to M node.
Step 4. Merge the results on the node M .
We describe the development features of Q-e�ective programs using distributed
memory.

The algorithm of matrix multiplication

Each Q-term
∑k

s=1 aisbsj(i = 1, . . . , n; j = 1, . . . ,m) is calculated on your
compute node of S. If number of nodes of S is less than the number Q-terms then
some node of S can be calculated several Q-terms. The result of the calculation
of each Q-term is transmitted to the node M .

Gauss�Jordan method of solving of linear equation systems

Each matrix Āj1(j1 = 1, . . . , n) and the correspondingQ-term ui(i=1, . . . , n!)
are to be calculated at its node of S. If the number of nodes S is less than n
then nodes of S should perform calculations for several values of j1. Nodes of
S receive information from a node M to compute matrices Āj1(j1 = 1, . . . , n)
and corresponding Q-terms ui(i = 1, . . . , n!). Results of calculation r1 and Ār1

are transmitted to node M . Nodes of S receive information from a node M
to compute matrices Ār1j2(j2 = 1, . . . , n; j2 6= r1) and corresponding Q-terms
ui(i = 1, . . . , n!). Each matrix Ar1j2(j2 = 1, . . . , n; j2 6= r1) and the correspond-
ing Q-term ui(i = 1, . . . , n!) are to be calculated at its node of S. Results of
calculation r2 and Ār1r2 are transmitted to node M . The following n− 2 cycles
of calculations are executed similarly.

Jacobi method of solving a system of linear equations

Each component of the vector x̄k(k = 1, 2, . . . ) is calculated on di�erent
compute node S. If the number of nodes of S is less than n then nodes S should
perform the calculations for several components of vector x̄k(k = 1, 2, . . . ). At
�rst node M sends to the nodes of S the necessary information to calculate
the Q-terms x1

i (i = 1, . . . , n). Results of calculating are transmitted to node M .
Node M sends values x1

i (i = 1, . . . , n) to the nodes S. Node M calculates the
value of ||x̄1 − x̄0|| < ε. At the same time x2

i (i = 1, . . . , n) are computed on the
nodes of S simultaneously. Next iterations are executed similarly.

At the present time Q-e�ective programs are designed for the considered
algorithms. To develop programs we use the programming language C. OpenMP
technology is used for shared memory, MPI and OpenMP are used for distributed
memory. The research was performed on the supercomputer �Tornado� of South
Ural State University. The programs for shared memory were executed on one
compute node. Programs for distributed memory used several compute nodes.
Dynamic characteristics of the programs were evaluated. The students of South
Ural State University N. Val'kevich [19], D. Tarasov [20] and Yu. Lapteva [21]
developed the programs and found the evaluations of their characteristics.
Figure 1 shows the e�ciency of Q-e�ective programs of the matrix multiplication
algorithm for shared (top graph) and distributed memory (lower graph) [19].
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Fig.1. The e�ciency of Q-e�cient programs of the matrix multiplication
algorithm for shared (top) and distributed memory (bottom)

The study of the Q-e�ective implementation of the algorithm shows that
implementation of principle �master-slaves� for some algorithms impractical be-
cause it increases the amount of transfers between computing nodes. An example
of such algorithm might be Jacobi method for solution of �ve-point di�erence
equations. The study also reveals that usage of distributed memory is imprac-
tical for some algorithms because it increases execution time compare to usage
of shared memory. An example is sweep method which is used for solution of
three-point di�erence equations.

5 Conclusion

This method of designing a parallel program gives the possibility of the devel-
opment of Q-e�ective program for numerical algorithms. Q-e�ective program
uses the parallelism resource of the algorithm completely. The method can be
used for the development of libraries of parallel programs for di�erent classes of
numerical algorithms.
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Q-determinant makes the numerical algorithm clearer in terms of structure
and implementation. In particular, it makes an opportunity to show the existing
parallelism of the algorithm and the possible way of its parallel execution. So we
can develop e�cient implementations of algorithms for real parallel computing
systems.
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