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Abstract. Multioperators-base schemes up to 32nd-order for fluid dy-
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1 Introduction

The multioperators technique proposed in [1] is a way to construct arbitrary
high-order numerical analysis formulas and, in particular, arbitrary high-order
approximations to fluid dynamics equations. High orders are obtained via in-
creasing numbers of basis operators with fixed stencils rather than by enlarging
stencils or polynomial orders (that is, by increasing numbers of basis functions).
The basis operators are generated by one-parameter families of compact approx-
imations Lp(c) to a target linear operator L and the resulting multioperators

look like
M
Lu(er, e em) = Z%‘Lh(ci) (1)
i=1
where ¢, co,...,cp are the input values of parameter c. The ¢; values uniquely

define the ~; coefficients making approximation orders proportional to either M
or 2M . Considering them as free parameters, one can control the multioperators
properties.

As follows from Eq. (1), calculations of the multioperators actions on known
grid functions involve performing similar arithmetic operations for each parame-
ter ¢;. Thus multioperators-based numerical analysis formulae can be calculated
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in a parallel manner. That property can be used also for constructing parallel
algorithms for Computational Fluid Dynamics (CFD) applications.

Several types of multioperators were investigated and used in CFD algo-
rithms, the main tasks being 2D and 3D Navier-Stokes problems for compressible
gas flows . Some theoretical topics can be fond in particular in [2]. Various types
of high-order multioperators-based numerical analysis formulae are described in
[3]. In [5], a family of extremely high order multioperators based on two-point
compact approximations to derivatives is presented. The resulting conservative
linear and non-linear schemes can be used for smooth and discontinuous solu-
tions. The complete theory of multioperators can be found in [4].

Below a brief overview of the latest both theoretical and numerical results is
presented.

2 Schemes outlines

Using the uniform mesh wy, : (x; = jh,j = 0,£1,£2,...), h = const, the
multioperators family under consideration can be created in the following way.
First, the two-point operators depending on parameter ¢ are introduced in the
form

Ri(c)=I+cA_, R.(c)=1-cAs (2)

where A_ and A, are the two-point left and right differences. Then the upwind-
downwind pair for approximating the first derivatives with the truncation orders
O(h) are defined by

Li(c) = %Rl(c)flA,, L.(c) = %RT(C)71A+- (3)
Assuming the Hilbert space of bounded grid functions with the inner product
defined by the summation over grid points, they have the same skew-symmetric
component and the self-adjoint components with opposite signs. It follows from
the Eq. (3) that very simple two-diagonal inversions of the operators from (2) are
needed to calculate the actions of operators L; and L, on known grid functions.
Now the skew-symmetric second order operator Ly(c) in Eq.(1) is defined
as Lp(c) = (Li(c) + Ly(c))/2. Fixing M values ¢1,¢ca,...cp and solving the
linear system for ; coefficients, one obtains the skew-symmetric multioperator
Las(cy,ca,...,car) providing the approximation order O(h?M) for derivatives of
sufficiently smooth functions. Additionally, we construct the self-adjoint multi-
operator defined by

M1 Ml
DMl(El,EQ,...,EMl):Z’%Ll(@'), Z’%Zl (4)
i=1 =1

where L1 = Li(c) — L.(c)) and M is possibly differs from M in the following
it is however assumed that M; = M. For fixed values ¢;,¢ = 1,2,... M, the
4; coefficients can be obtained to give Dy, [u]; = O(h*M171) where [u], is a
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sufficiently smooth function projected into mesh wy,. To simplify the multioper-
ators investigations, we always suppose that the parameters values are linearly
distributed inside the intervals [¢in, Cmaz] and [Gmin, Cmaz]- In this way, the
multioperators become two-parameter dependent.

In the case of model equation

ou  Of(u) B
the semi-discretized scheme in the index-free form reads
15
8_1; + LM(Cminu Cmam)f(u) + CDM(Eminu Emam)u =0, C=>0. (6)

Setting f(u) = au, a = const and using the Fourier transform, the ¢pin, Cmaz
values can be used to control the spectral properties. The ¢,in, Cmaz values were
considered as admissible if Dy (Gmin, Cmaz) = 0. Then scheme (6) is stable in the
Ls norm as a scheme with a non-negative operator. The term with D) is the
high-order dissipation mechanism which can be used to damp possible spurious
oscillations.

Scheme Eq. (6) can be readily extended to multidimensional cases by con-
structing the multioperators for each spatial coordinate independently. Consider,
for example, K-dimensional conservation laws in the case of vector valued func-
tions u, fi(u), k= 2,3

K
Ou Ofy;(u)
— =0. 7
TR (7)
Using uniform meshes wy, and the above defined operators for each spatial coor-
dinate xy, the k" multioperator looks as

M My,
k k k) —(k _ _(k k), —
LS (omins emaz) = > %L§7(c), DY @N), @) =3 4L @) ()
=1 =1

where the basis operators Lék) and Lgk) are the Ly and L; ones correspond-

ing to the wy mesh. It is suggested in Eq (8) that dissipative multioperators
Doy, (557’2",55,’31) can be different for different coordinates zj while the main
skew-symmetric multioperators are defined uniquely for each coordinate.

The semi-discretized scheme for Eq.(7) now reads

K K
%+ZL§@>fk(u)+ZCkDg§>u:0, Cr > 0. (9)
k=1 k=1

Considering the Hilbert space of vector-valued functions, one can prove that the
scheme under some assumptions concerning the Jacobian matrices is stable in
the frozen coeflicients case. It can be readily cast in the flux form.

The Euler equations may be viewed as a particular case of the governing
equations Eq. (7). In the case of the Navier-Stokes equations, various approxi-
mations to the viscous terms can be added to Eq. (9). For example, they can be
compact or multioperators ones.
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2.1 High resolution during long-time integration

Returning to the scalar 1D case, the dependence of the multioperators on two
parameters allows one to control their spectral properties. The well accepted
way to characterize the properties of approximations to convection terms is to
consider the exact numerical solutions of the semi-discretized advection equation
obtained from (5) by setting f(u) = au, a = const. In our case, the exact solution
of Eq.(6) with u(0,z) = exp(ikz) reads
u; = exp (—Cdt/h) exp(ik(hj — ast)), ax= aL (0, Conin s Cmaz )/ Qs
d= hDM(Ot, Cmins Emaz)-

The difference between the numerical phase velocity a, and the exact one a can
be viewed as the phase errors while function d(a) > 0 is responsible for the
harmonics damping. It can be viewed as a measure of amplitude errors. Clearly,
even small phase errors can produce large solution errors for large time values ¢.
Using the free parameters ¢pin, Cmaz, the optimizing procedure minimizing the
phase errors for as large intervals of the dimensionless wave numbers « = kh as
possible can be readily carried out. This was done for the 16th,20th,32nd and
36th - order schemes.

e d
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0.008} 0.008 !
0.006] 0.006 :
1 2 3 i
0.004] 0.004 2| |
0.002] 0.002
0.000 “ kh 0000 Lo kh
00 05 10 15 20 25 30 00 05 10 15 20 25 30
(a) (b)

Fig.1. a: Phase errors vs. wave numbers; 1:16th-order,2: 32nd-order; b: Dissipation
exponent vs. wave numbers; 1,2,3: 15th-order, various choice of ¢min, Cmaz-

Fig.la shows the phase errors e(a) = |as/a — 1| for the 16th- and the
32th -order multioperators. They correspond to the near-optimal values of ¢y,
and ¢pq, obtained by calculating the functions for selected points in the two-
dimensional space of the parameters. As follows from the Figure, the range of
dimensionless wave numbers [0, o, ] for which the phase errors are small is notice-
ably greater for the 32th-order multioperator than that for the 16th-order one.
Moreover, the ”small” values of the errors shown by both curves in the Figure
can differ by orders of magnitude indicating the advantages of the 32th-order
multioperator. As an illustration, Table 1 presents the phase errors e for the
selected values of the dimensionless wave numbers.
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Table 1. Phase errors e for the selected values of a.

« 1.5 2.0 2.2 2.5
16th order 1.70e-6 1.8e-5 1.7e-5 1.2e-3
32th order 4.9e-11 5.6e-8 5.3e-7 7.7e-6

The amplitude errors introduced by multioperator Dj; are characterized by
the dissipation exponent d(Cmin; Cmaz). Their dependance on wave numbers are
shown in Fig.1b for several parameter pairs. Curvesl,2,3 correspond to the 15th-
order multioperator. They look as cut-off filters of high wave numbers harmonics
with various cut-off values. Choosing €in, Cmaz, One can control the dissipation
property of schemes. The dashed curve in Fig.4 is obtained for near maximum
cut-of value of the 31st-order multioperator.

To estimate the ability of the the schemes to preserve high resolution during
long-time integration, consider the benchmark problem [6] for the advection
equation (5) with f(u) = u and the initial condition

u(0,2) = [2 + cos(Bz)][exp(—In 2 (2/10)?)].

The task is to calculate the numerical solutions at ¢ = 400 and ¢t = 800 for
B = 1.7 using mesh size h = 1. Parameter § is equal to our parameter « for
that mesh size. Deviations from the exact solution (which is the travelling wave
package containing very short waves harmonics defined by the initial condition)
allow one to estimate the resolution, dispersion and the dissipation properties
of the tested schemes. The problem can be solved exactly using the Fourier
transform. The obtained solutions for a given spatial linear operator can provide
the upper estimates of the maximum values of the time units t,,q, for which
deviations from the exact solutions are less than some tolerance . Fig.2 shows
functions t,,q.(8) for € = 0.1 and several spatial operators(defined by the second-
order central difference, the fourth-order compact Collatz approximation and the
16th and 36th-order multioperators). As seen, large phase errors for high wave
numbers can prevent reasonable description of harmonics advection during large
time intervals in the case of non-optimized relatively low-order schemes. Clearly,
filtering and time stepping devices can decrease t,,q, values.

The calculations were carried out for the higher than required wave number
(8 = 2.1 instead of 8 = 1.7) using the 32nd-order multioperator. Both numerical
and exact solutions are presented in Fig.3 at ¢ = 15000 (markers and solid
lines correspond to the numerical and the exact solutions)showing very good
dispersion-preserving property of the optimized multioperator.

3 Parallel implementation

The important multioperators property is the possibility to calculate their ac-
tions on known grid functions by parallel calculations of the actions of their basis
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Fig.3. Numerical solution at ¢t = 15000
obtained with 32th-order multioperator .

Fig.2 Maximum time units for which solution er-
rors are less than 10 percent.

operators. It can be used for example in the framework of MPI when perform-
ing calculations with multicore PC. In the case of massively parallel system for
solving 3D CFD problems, it can be combined with domain decomposition ap-
proaches exploiting considerable amount of left and right sweeps. Their number
for a line along which the left and right sweeps are carried out can be estimated
as K = 5M where M is the number of parameters defining the multioperator.
For example, one has K = 20 for the 16th-order scheme. Each sweep consists
of calculating a current value with known previous one differing only in the
parameters values and the functions which derivatives are approximated. Con-
sidering for example, the general form of the left sweep for a grid value v; with
1=1,2,..., N, the process looks as

v; = alcj)vi1 +b(¢j) fi, 7=1,2,...,. M (10)

where f; is a known grid function. Thus it is possible to use m processors by
partitioning the interval ¢ € [0, N] into m equal parts with transferring the
value calculated by the k-th processor to the (k4 1)-th one, k =1,2,...m — 1.
Using the idea, the calculations for one-line left sweeps with m processors can
be schematically outlined in the form of Table 1 where "sweep k” means the
calculations according Eq. 10.

As seen, some processors are idle at some stages. However the duration of
(K + m) stages is (K 4+ m)7 where 7 is time needed for each part of the de-
composed space interval. Neglecting the data transfer expenses and comparing
with the time K'm7 in the case of a single processor , one obtains the speed up
s equal to Km/(K +m). It increase approximately linear if m << K giving, for
example, s = 8 for K = 40, m = 10. The above "one-line” idea applied to the
3D Euler or Navier-Stokes equations looks as follows. Supposing for the sake of
argument that there are m?® processors and a N,, x N, x N, mesh, the computa-
tional domain is partitioned into m x m x m cubes with m cubes in each spatial
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Table 2. Organizing parallel calculations for K sweeps

processors 1 2 3 4 e m

stage 1 sweep 1

stage 2 sweep 2 sweep 1

stage 3 sweep 3 sweep 2 sweepl

stage K sweep K sweep K-1 sweep K-2 . . sweep K-m+1
stage K +1 sweep K sweep K-1 . . sweep K-m
stage K4+m sweep K

directions (say, x,y and z ones). Considering for example the sweeps along z-
coordinate, all processors are supposed to be involved in the calculations sweeps
along N, N,/m? lines intersecting their x = const faces of the cubes. Thus the
time needed to calculate the xz-derivatives in each grid point of the computational
domain is N,N,(K + m)7/m?. The same operation performed by a single pro-
cessor requires N, N,m7 time (in reality, it is Ny N,m7i, 1 < 7 due to the data
transferring loses). It gives the ”ideal” speed-up s, for the calculations along the
z-coordinate s, = Km3/(K +m). One has s, ~ m? if K >> m. Having in mind
that the total number of the processors N, is equal to m3, one has s, ~ N,.
Upon finishing the job for the z-coordinate, the same processors perform the
calculations for the y-coordinate and finally for the z-coordinate thus preserving
the ”ideal” speed-up.

In Table 2, the calculation times for our 3D Euler calculations of jets insta-
bility with several number of the processors of the Lomonosov supercomputer of
the Moscow State University are presented, the MPI programming being used.
The mesh was 360 x 100 x 100. The processors were distributed for three spatial
coordinates as m X m X m with m ranging from 2 to 10.

Table 3. Execution times per time step and acceleration

Number of processors 8 27 64 125 216 1000
Distributions 2Xx2x23x3x34x4x45%x5%x56x6x6 10x10x 10
Time per step, sec 113 27.45 12.64 6.34 3.99 1.70
Acceleration 1 4.12 8.94 17.8 40.3 66.5

In the above Table, the acceleration is defined as the time decrease when
comparing with the case of m = 2.

4 Numerical examples

4.1 Applications to jets instabilities

The constructed schemes fit neatly into computational aeroacoustic require-
ments. They allow to describe properly pressure pulsations which amplitudes are
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about 1076-10~7 of mean pressure levels when solving the Euler or the Navier-
Stokes equations, no linearization or introducing base flows being needed.

Calculations with 10th-order multioperators schemes were carried out for
cold and hot axisymmetric jets using both Cartesian and cylindrical coordinates
analytically transformed to condense grid points near shear layers. The bound-
ary conditions at nozzles lips were posed either as the results of the nozzles flow
calculations or using analytical expressions (as in [7]) providing various initial
shear layers thicknesses. Instabilities resulting in the break down of the steady
state of the jets with vortex rings formation and sound radiations were investi-
gated using both axisymmetric and 3D forms of the governing equations. It was
found that the axisymmetric formulation is incomplete due to the excitation of
azimuthal modes appearing in the 3D calculations. The snapshots of the vortic-
ity fields in both cases are shown in Fig.4 and Fig.5 with more regular structure
of the vorticity in the axisymmetric case.

Fig.4 Snapshot of the vorticity field. Fig.5. Snapshot of the vorticity field.
Axisymmetric formulation 3D formulation

Fig.6 and Fig.7 shows the examples of the acoustic pressure spectra calculated
for the microphones placed at points with polar coordinates r = 20R, 0 where R
is the initial jet radius, the origin being places at the center of the initial cross
section of the jets. In the Figures, the curves differ in that they correspond to
the boundary conditions at the nozzle lips specified in analytical forms (labelled
as ”synthetic” red lines) and obtained via flow calculations in the nozzle (green
lines). The results of the calculations with the Cartesian grid are also shown in
the Figures (blue lines).

The thicknesses of the shear layers at the jets boundaries were different in
all presented cases causing different sound pressures levels seen in the figures.
However the general form of the spectra looks very similar.
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Fig.6. Spectra of acoustics pressures for Fig.7. Spectra of acoustics pressures for
3D calculations; r = 20R, 6 = 10° 3D calculations; r = 20R, 6 = 40°

Calculations with the multioperators schemes were carried out also for the 3D
underexpanded jets in the case of narrow rectangular nozzles. They were aimed
at the direct numerical simulation of the screech effect previously considered
in the case of 2D nozzles [9]. The obtained acoustics fields generated by the
unsteady behavior of the shock cells were found to correlate well with the 2D
results. The calculated spectra with the main peaks close to the experimental
ones looks very similar to those presented in [9].

4.2 Compact and multioperators schemes with Immersed
Boundary Method (IBM)

High approximation orders of multioperators-based schemes is entirely due to
exact solution smoothness allowing to get high-order terms in the corresponding
Taylor expansion series. Thus smooth meshes are needed to provide peak perfor-
mances of the schemes. Having in mind possible complexities when constructing
smooth meshes for complex geometries, the IBM offers very good opportunity
for using compact and multioperators-based schemes with the Cartesian coordi-
nates when solving the Navier-Stokes equations. Skipping the extensive relevant
literature, its earlier formulations were presented for example in [8].

In the present study, the direct forcing version of the IBM was applied to
the compressible Navier-Stokes equations. The idea behind this is to get at least
the second-order accurate solutions inside boundary layers at solid (in general
moving) boundaries and highly accurate solutions away from them using non-
adaptive to solid boundaries smooth meshes (for example, the Cartesian ones).

The 16th-order multioperators were used to approximate the inviscid terms of
the compressible Navier-Stokes equations written for the Cartesian coordinates.
Having in mind low-order representation of the boundary forcing terms, the
viscous terms were discretized via the second-order centered differences.
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In the present study, calculations for Mach number M = 0.2 were carried out
using non-local high-order approximations (5th-order compact and 16h-order
multioperators-based) with the sweeps along the Cartesian coordinate lines, the
presence of the solid body being modelled by the forcing terms only. Bilinear or
Radial Basis Functions (RBF) interpolants were used to define the values of the
dependent variables at the near-boundary points outside or inside the cylinder.
Several meshes were used to verify the mesh-convergence and good agreements
with existing experimental and numerical data for low Reynolds data.

In the near-resolved case Re < .400, the calculation clearly showed the Von
Karman vortex streets behind t5he cylinder. Fig.8 presents the vorticity field for
Re = 400 while Fig.9 shows the acoustic spectrum for that case.
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Fig. 8 Re = 400: snapshot of the vorticity field. Fig. 9. Re = 400: acoustic spectrum.

Fig. 10 shows good agreement between calculated Strouhal numbers and
various numerical and experimental data. The acoustic spectrum in the case of
underresolved boundary layer (Re = 108) is displayed in Fig. 11.

Fig. 10. Strouhal number vs. Reynolds number.  Fig. 11. Re = 10%: acoustic spectrum.
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4.3 Using the 32nd- and 16th-order multioperators in the case of
strong discontinuities.

The conservative property of the multioperators-based schemes with dissipa-
tion mechanisms allows one to use them in the case of relatively small Mach
numbers supersonic flows. In those cases, high-order dissipation mechanisms can
be sufficient to suppress spurious oscillations. An example is the results of nu-
merical simulations of underexpanded jets at M < 1.5 [9] with clear pictures
of the screech waves. However monotonization devices are needed in the high
Mach number cases. Following the well known ways, non-linear schemes can be
constructed. The main aim in the multioperators context is to obtain numer-
ical solutions combining reasonable shocks and contacts descriptions and high
accuracy and high resolution away from the discontinuities. In [5], the hybrid
schemes with the 16th- and 32th-order multioperators are tested against 1D
problems (discontinuous solutions of the Burgers equation, extremal Riemann
problems). Extending testing calculations, the double Mach reflection problem
[10] was considered. Fig.12 shows the calculated density field resulting from a
shock front hitting a ramp which is inclined by 30 degrees. The calculation were
carried out using the 16th-order hybrid scheme from [5] and the setup described
in [10] but with coarser mesh (the mesh sizes are h, = h, = 1/60).

Fig.12. Double Mach reflection problem; density contours.
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