
LRnLA Algorithm ConeFold with non-Local
Vectorization for LBM Implementation

Anastasia PerepelkinaB[0000–0003–2517–6064] and

Vadim Levchenko[0000-0003-3623-0556]

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
mogmi@narod.ru, lev@keldysh.ru

Abstract. We have achieved a ∼ 0.3 GLUps performance on a 4 core
CPU for the D3Q19 Lattice Boltzmann method by taking an advanced
time-space decomposition approach. The LRnLA algorithm ConeFold
was used with a new non-local mirrored vectorization. The roofline model
was used for the performance estimation and parameter choice. There
are many expansion possibilities, so the developed kernel may become a
foundation for more complex LBM variations.

Keywords: Lattice Boltzmann Method, LRnLA algorithms, Parallel
computation.

1 Introduction

One of the reasons for the popularity of the Lattice Boltzmann Method (LBM) [17]
for Computational Fluid Dynamics (CFD) is the ease of its efficient computer im-
plementation. However, some issues exist. LBM implementations remain memory-
bound, and the vectorization is complicated since misaligned writes or reads re-
quire significant overhead. To try to reach the maximum performance efficiency
authors vary the data storage method, data layout, propagation (streaming)
algorithms. The efficient data synchronization for massively parallel implemen-
tations is also in a high demand since CFD problems are radically multiscale.

GPU makes the aforementioned issues more prominent. However, it provides
better performance results than CPU in many cases. At the same time, CPU
codes remain relevant. CPU codes are more flexible for multiphysics frameworks,
as we see in the famous packages such as waLBerla [3] and OpenLB [5]. For
large supercomputer simulations CPU has more memory so that the potentially
bigger problems may be solved. And since the GPU computers are essentially
heterogeneous, efforts are made to offload some work to the CPU kernels [15].

The aim of this work is to break the performance records of CPU imple-
mentation with the use of LRnLA algorithms [7]. LRnLA algorithms may be
seen as an advanced temporal blocking method. Temporal blocking was previ-
ously applied to LBM [12, 4]. Indeed, it seems to grant better parallelization
efficiency [19]. For GPU, it was used for host-device and intra-device communi-
cations [16]. While the apparent similarity in using the space-time parallelism

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

274



2 A. Perepelkina et al.

exists, LRnLA method is different. Its base lies in analyzing the dependency and
influence conoids in the dependency graph, and the optimization is conducted
with the account for memory and parallelism hierarchy of the computer. In fact,
we disagree with [12] that the blocking method that is presented there is most
efficient, and with the idea that 3D blocking is undesired.

In this paper, we show how the LRnLA algorithm ConeFold is built and
implemented for LBM on CPU, how its performance may be estimated with the
use of the roofline model. This implementation actually gives the performance
per node record that surpasses every CPU result we found in the published work.

2 Lattice Boltzmann Method

In LBM, the simulation domain is split into Nx × Ny × Nz cubic cells. In
each cell, the probability distribution function is known for a set of discrete
velocities cijk. The specific method is denoted by a word like D3Q19, where the
first number is the dimensionality of the model and the second number is the
number of velocities. Discrete velocities are chosen as vectors that point from the
center of the cell to the centers of its neighbors, and a zero velocity. In D3Q27,
there is a set of vectors that point to each cell in a 3 × 3 × 3 cube. In D3Q19,
the longest vectors of D3Q27 are pruned.

For each velocity the update rule for its Distribution Function (DF) is split
into two sub-steps: streaming fijk(rijk, t + ∆t) ← fijk(r000, t), and collision
fijk ← fijk − (fijk − feqijk)/τ ; i, j, k = −1, 0, 1 for D3Q27. Streaming copies
the fijk from cell with coordinates r000 to the cell with the relative position
rijk = r000 + cijk∆t, cijk = (i, j, k). The collision operates with the DF in
the same spatial coordinates. The expression for the equilibrium DF feqijk(ρ,u)
(ρ =

∑
fijk, u =

∑
cijkfijk) is taken as the most commonly used second-

order polynomial in u [17] to make the performance comparison easier, but any
expression that operates on the data inside one LBM cell may be used in the
current implementation.

3 ConeFold Algorithm

3.1 Algorithm as a Decomposition of a Dependency Graph

The core idea in the LRnLA method revolves around the existence of the influ-
ence and dependency region in space-time for each cell [8]. The dependencies in
an LBM stencil fill a cube, so the data in one cell is influenced by a 4D pyramid
in space-time. The whole simulation region may be decomposed in such regions.

That is why we illustrate algorithms as shapes in a dependency graph space
with a subdivision rule [9]. A dependency graph consists of nodes (operations)
and directed links (data dependencies between operations). A shape covers some
nodes, so an algorithm described by this shape should perform all the operations
of these nodes. It may be subdivided by planes with one restriction: if there are
dependencies directed from one side of the plane to the other, there should not

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

275



LRnLA algorithm ConeFold for LBM 3

be any that are directed backward. It ensures that if one part is influenced by the
other, there is no backward dependency. This way the algorithm is decomposed
into several sub-steps that should be processed in a sequence, that is determined
by the direction of the dependencies. If there are no dependencies between the
parts, the algorithms may be processed asynchronously. The decomposition con-
tinues until the shapes cover only one node. Thus, this definition of the algorithm
is recursive, and leads to the existence of non-local asynchronous elements.

For example, the algorithm of parallel implementation of LBM for Nt time
steps on 2 nodes with 4 cores and SIMD support.

– Decompose Nt ×Nx×Ny ×Nz domain (i.e. the whole dependency graph)
into Nt flat (in time) layers with size Nx × Ny × Nz. They have data
dependencies pointing upwards, so they need to be processed in sequence.
We call algorithms that start with this kind of decomposition ’stepwise’ or
’orthodox’.

– Decompose the layers into two rectangles by a vertical (in time) plane x =
const. They have no data dependencies between each other, so they may be
processed in parallel by the two processors.

– Decompose the rectangles into two smaller rectangles by vertical planes y =
const. They have no data dependencies between each other, so they may be
processed in parallel by the 4 cores.

– Decompose the rectangles into separate cells. These are traversed these in
any loop sequence, which may be vectorized by the compiler.

This kind of implementation is far from optimal. The loop traversal over
large blocks of data in the lowest level of decomposition cause the memory-bound
limitation: at each time step all DF data should be loaded and stored in memory.
At the multi-core stage cache conflicts may arise, their resolution may lead to
overhead. The necessity of using two lattice copies for the propagation scheme
arise here. For multi-node parallelism, the data exchange should be performed
at each time step, and this becomes the bottleneck for the parallel scaling. The
point where this algorithm went wrong is the first subdivision into flat time
steps. There are plentiful possibilities of the dependency graph subdivision that
lead to better data access locality and do not make the result incorrect.

In LRnLA, the choice of the subdivision planes comes from natural require-
ments. First, we have planes with t = const, the synchronization instants, where
data may be visualized or analyzed in any other way. Second, we choose hyper-
planes Ct = x+const, Ct = y+const and Ct = z+const where C is the discrete
information propagation speed. Here, C = ∆x/∆t.

The dependency graph for D1Q3 LBM with a ’swap’ propagation scheme
shown in Fig. 1(a). The subdivision planes in it surround an elementary ConeFold
algorithm shape.

Ct = −x+const, Ct = −y+const, Ct = −z+const hyperplanes may also be
considered. This leads to a subdivision into pyramids, diamonds and other shapes
to complement them in 4D space-time [7]. Otherwise, all simulation domain may
be tiled by just one shape. It has many advantages, and the easier coding is just
one of them.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

276



4 A. Perepelkina et al.

(a)

t=const

t=const

C
t=

x

C
t=

x

(b)

Fig. 1. (a) Dependency graph for LBM with ’swap’ propagation scheme. Subdivision
planes surround an elementary ConeFold (LRnLA cell). Operations are denoted by
square markers. Red: non-local swap. Blue: local swap and collision.(b) The DFs that
participate in a non-local swap in an LRnLA cell in D3Q27 case. The figure looks
similar in x-y, y-z and z-x axis, the colored area is the CF projection

3.2 Implementation of LBM with ConeFold

The ConeFold (CF) algorithm is implemented with recursive templates in C++.

1D case The level of recursive subdivision of a CF is parametrized by an integer
which is called rank. One 1D CF with rank r = R (denoted by CF〈d = 1, R〉) is
a function call of 4 CF〈1, R− 1〉 in the order which satisfies data dependencies
(Fig. 2(a)). On rank r = 0 the CF is an elementary update according to the
scheme stencil (Fig. 1(a)). It is a portion of the dependency graph that is defined
as an LRnLA cell for CF.

(a)

Nt

t

x

Nx

(b)

t

x

y

Fig. 2. (a) Two CF〈1, MaxRank〉 cover the domain and are recursively decomposed into
smaller CFs. Arrows show data dependencies. (b) ConeFold for d=2.

If the top or bottom base is outside the computation region, the CF is speci-
fied as a right or left boundary CF. If r > 0 these call one CF inside the domain
and two boundary CFs with r − 1 and a same type (left or right). If r = 0 the
boundary condition of the scheme is applied. The periodic boundaries are not
possible with this algorithm without additional techniques.

The computation is started with a right boundary CF〈1, MaxRank〉. Assuming
the domain has Nx = 2MaxRank cells, after it is finished, the cells evolved to the

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

277



LRnLA algorithm ConeFold for LBM 5

number of steps from 1 to Nt = 2MaxRank, in a linear progression from left to
right. Only the rightmost cell has been updated Nt times. The left boundary
CF〈1, MaxRank〉 is required to update all other cells to the same time step.

Recursive d-binary subdivision of the CF algorithm makes it natural to use a
Morton Z-curve [10] for data storage. Thus, the data storage cells are organized
in a recursive structure, and the indices to the neighboring cells are computed
accordingly. Inside one CF, the pointer to the data in its bottom base, and array
offset to the data in the projection of its top base are known. Thus, one CF〈1, 0〉
has access to 2 data structure cells.

We need to find a LRnLA cell so that it uses the available data and homo-
geneously tiles the whole dependency graph of the domain evolution for 2MaxRank

steps, with a possible exception for boundary conditions.
For example, in D1Q3 the following variation of the propagation scheme

would suffice (Fig. 1(a)). Each data storage cell contains the data for f−1, f0,
f1, there is access to the two adjacent cells: c0 and c1. The update rule is:

1. swap f1 of cell c0 and f−1 of the cell c1 to the right of it (non-local swap);
2. swap f1 and f−1 of c1 (local swap).
3. collision in one cell c1.

Note that before this CF〈1, 0〉 is performed, the f1 value of c1 would contain
f−1 from the cell c2 to the right of it. This is because the CF〈1, 0〉 had been
already performed for cells c1 and c2, and its step 1 had swapped f1 of c1 and
f−1 of c2. This is why c1 contains the required post-stream data. The local swap
may be merged with the collision.

2D, 3D Case The d-dimensional algorithm is constructed by a direct product
of 1D algorithms (Fig. 2(b)). There are the following changes.

– CF〈d,R〉 is subdivided into 2d+1 CFs with R-1.
– There are 3d types of boundary CFs. It is necessary to specify CFs with r = 0

and with r > 0 for all cases of boundary: faces, edges, corners. Obviously, a
code generator is used for this task.

– (3d − 1) boundary CFs of the maximum rank are required to progress from
one synchronization instant to the next one.

– The CF〈d, MaxRank〉 base projection covers 2d·MaxRank cells.
– The top base is shifted from the bottom one by 2MaxRank cells in d directions.

Note that the dimensionality of the CF is independent of the dimensionality
of the model. If d = 2 for D3Q27 scheme, one LRnLA cell would be redefined to
include the update for Nz LBM cells. In one data storage cell there are 27 Nz

sized arrays for fijk.

Other Stencils The other possible reason to redefine an LRnLA cell is the
existence of more extended dependencies since one CF〈d, 0〉 has access only to
2d cells. For example, the LRnLA cell for D1Q5 would update 2 full sets of
distribution functions:

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

278



6 A. Perepelkina et al.

– swap f1 with f−1 and f2 with f−2 in c0 and in c1 (local swap);
– perform the collision in c0, c1;
– swap f2 from c0 with f−2 of c1, f2 from c1 with f−2 of c2;
– swap f−2 of c1 with f2 in c1 and in c2;
– swap f1 from c1 with f−1 of c2, f1 from c2 with f−1 of c3;
– swap f2 from c1 with f−2 of c2, f2 from c2 with f−2 of c3;

Here, local swap for all cells is required in initialization and in output. Some
steps may be merged in optimization.

The velocities that are swapped in a 3D case of D3Q27 CF〈3, 0〉 are depicted
in Fig. 1(b). D3Q19, D3Q15, D3Q7 are devised from this pattern by pruning.

For clarity, we repeat the three terms for cells that are used here:

– LBM cell is the lattice node with the corresponding DFs;
– LRnLA cell is the portion of the dependency graph and consists of a number

of operations for an elementary update;
– data storage cell is a set of variables that are organized as an element of a

data structure that is used.

Non-local Vectorization There are several possibilities of vectorization in CF.

1. 2D CF may be used for 3D computation, as in [13]. In each cell, 27Nz

DFs would be stored in a SoA manner, and in one CF〈2, 0〉 they would be
processed in a loop, that may be vectorized by a compiler or manually. The
fact that one axis is detached from the LRnLA decomposition becomes the
main issue here, since it brings back the problems of stepwise algorithms to
this dimension.

2. The cell of the data structure may be redefined to contain 2 × 2 × 2 LBM
cell data. The 8 values for each DF in it would be collected in one SIMD
vector. This vectorization is local, but requires many reshuffle operations,
especially in the collision step. It may be useful to keep this method in mind
for possible GPU implementation, but for CPU the performance is limited
by the overhead.

In the first case the automatic vectorization is local as well, and the misalign-
ment issues need to be resolved. The non-local vectorization may be implemented
in a way that requires less overhead. For vectors of length 4, the cell data for
cells {i, i+Nz/4, i+ 2Nz/4, i+ 3Nz/4} with i = 0, 1, ..Nz/4− 1 are combined
into vectors manually. This way, the domain is folded 4 times, the reshuffle is
only required on the folds (Fig. 3).

Here a third method is proposed, which results in a non-local vectorization for
3D CF, and, moreover, fixes the issue of the impossibility of periodic boundaries.

For the explanation of the basic idea let us assume SIMD vector length 2 in
D1Q3. Take a domain with 2·2MaxRank cells. Pack the data from cell (2MaxRank−1−i)
with the data from cell (2MaxRank + i) for i = 0, 1, .., (2MaxRank−1) into one LRnLA
cell. Combine all pairs of values into SIMD vector. Then, construct a CF for the

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

279



LRnLA algorithm ConeFold for LBM 7

2MR cells of the resulting data structure. The code for LBM inside the domain
stays the same but operates with SIMD vectors instead of scalars.

As a result, for the second value of the pairs, the computation is the same as
for the non-vectorized case. For the first value of the pairs, the computation is
mirrored. It has no impact on the streaming step. In the collision step, we need
to change the sign of the directed macro-values, such as u. The constant SIMD
vector {−1, 1} is used as a coefficient in the scheme.

Thus, f1 in the left half of the domain represents propagation to the left. f1
in the right half of the domain represents propagation to the right.

The right boundary CF〈3, 0〉 links the cell at (2MaxRank − 1) with the cell at
2MaxRank. The swap is performed between two values in SIMD vector for f1. The
left boundary CF〈3, 0〉 links the cell 0 with cell (2 · 2MaxRank − 1) and the swap is
performed between values in f−1.

Thus, this is a non-local mirrored vectorization (Fig. 3).
To enable the use of SIMD vectors with size 4 or 8 the domain is either

mirrored in another axis, or has more reflected copies along the same axis. Here
we present simulation with SIMD length 8 for single precision. With the use of
AVX512 the same may be done for double precision.

......
...... ............

......

Fig. 3. Local, non-local, and non-local mirrored vectorization. Arrow shows the coor-
dinate axis direction, blue segment shows SIMD vector pack. Vector length is 4.

Parallel Algorithm The TLP parallelization with CF is implemented with
the TorreFold LRnLA algorithm [14]. We define an integer parameter nLArank

(non-Locally Asynchronous rank). The TorreFold shape is similar to the shape
of the CF with r = MaxRank, but the decomposition rule is different (Fig. 4). It
is decomposed into 2(d+1)nLArank CFs. Some of these are independent and may be
processed by different threads. The asynchronous CFs are shown in a 1D case
in Fig. 4. In 3D there is also asynchrony in an x–y–z–t diagonal cross-section.

The specific implementation may differ, the following is used in the current
code. The CFs which stand on top of each other are collected in a tower (Cone-
Torre). All ConeTorres are distributed between threads in the Z-curve order.
The dependencies between them are ensured by semaphores. Each tower has d
semaphores. Initially, all semaphores are locked. The thread is assigned to some
ConeTorre, and it processes CFs with r = MR− nLArank in it one by one. Before
starting a CF, the thread waits for one semaphore in each of the towers that are
influencing it. After a thread finishes one CF it unlocks all its semaphores.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

280



8 A. Perepelkina et al.

Some ConeTorres start outside of the domain, but the CFs that are outside
are just skipped.

Nt

t

x

Nx

Fig. 4. TorreFold algorithm in 1D. Same color CFs may be processed in parallel.
Threads (curled lines) process CFs in one ConeTorre.

3.3 Roofline Model

The roofline model [18] helps to analyze bottlenecks in the implementation on
a given computer. It does not account for all possible code capabilities and
hardware limitations, but still, it is valuable for its simplicity.

For example, the memory-bound slope is usually shown for the RAM memory
throughput. However, the memory hierarchy allows, in some cases, to break this
ceiling. We propose to take into the account the caching ability of the hardware
by a divide-and-conquer approach [8]. If a task A consists of N similar sub-tasks
B1, B2, ..., BN , and all task A data is small enough to fit some level of cache,
then the memory bound limit of tasks B is determined by the throughput of a
higher level of cache. However, if we assume that each sub-task is carried out
one-by-one, the load on the memory throughput is not less than the sum of the
data required by each B task individually.

This conforms to the recursive definition of the algorithm as a decomposition
of a task into subtasks. For a given algorithm we need to estimate the arithmetic
intensity and the amount of data, that needs to be loaded into the cache.

The CF〈d, r〉 consists of 2(d+1)r LRnLA cells, so it has O(r, d) = o2(d+1)r

operations, where o is the number of operations in an LRnLA cell. During its
execution, the total amount of data loaded is L(r, d) = Nd +N((N + 1)d −Nd)
data storage cells, where N = 2r. The amount of data stored is S(r, d) = (N −
1)d +N ·NT (Nd − (N − 1)d).

The arithmetic intensity is O(r, d)/(L(r, d) + S(r, d)). The cached data size
is L(r, d).

In the presented code the recursive subdivision is as follows:

– a 4D cube that covers 23MaxRank LBM cells for 2MaxRank updates is decomposed
into 23(nLArank+1) ConeTorres;

– ConeTorres are decomposed into 2nLArank CFs with rank r∗ = MaxRank −
nLArank;

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

281



LRnLA algorithm ConeFold for LBM 9

– CFs are recursively decomposed into the same shapes of smaller rank until
the LRnLA cell is reached.

In this estimation, the boundary effects are not considered.
The Roofline for our implementation on Intel Core i5-6400 is shown in Fig. 5.

The arithmetic intensity increases with r. However, the algorithm performance
is limited by the roofline of all its smaller parts. Several arrows from the higher
levels of decomposition to the lower levels are plotted one by one from right to
left. If an arrow reaches memory bound slope, arrows to the left of it are not
allowed to be higher than this arrow. The color of the arrow shows the color of
the roofline that defines its memory throughput limit.

nLArank is set equal to 4. This choice is determined by the roofline: the
advantages of the (d+ 1)-binary recursive subdivision are evident only for ranks
smaller than MaxRank− 4 = 4.

With this model, we can estimate the disadvantage of the lower dimension-
ality of LRnLA decomposition. If a CF〈2, 0〉 contains Nz cell updates, it, and
all the CFs of higher rank, require more memory, and may not be localized in
higher levels of cache. For large Nz the arrows for R = 0, 1, 2 would all be lim-
ited by the RAM roofline. This goes in contrast with the guidelines from [12],
and also suggests that the non-local vectorization without mirroring the domain
decreases the efficiency.

The local vectorization with d = 3 would make the code compute-bound
according to this roofline model. Still, we do not see an implementation solution
for it without significant overhead.

100

101

102

 0.01  0.1  1  10  100

 0.01

 0.1

 1

L1
, 3

2K

L2
, 2

56K

LL
C, 6

M

DDR4, 6
4G

Pa
ra

lle
l 
p

e
rf

o
rm

a
n
ce

, 
G

Fl
O

p
s

p
e
rf

o
rm

a
n
ce

, 
G

LU
p

s

Operational intensity, perf./bandwidth, FlOp/byte

R
=

0
, 

L/
S

=
5

K
/6

4
0

R
=

1
, 

L/
S

=
2

8
.8

K
/9

.3
8

K

R
=

2
, 

L/
S

=
1

9
2

K
/1

0
9

K

R
=

3
, 

L/
S

=
1

.3
7

M
/1

.0
3

M

R
=

4
, 

L/
S

=
1

3
0

M
/1

1
5

M

R
=

8
, 

L/
S

=
1

0
G

/1
0

G

Fig. 5. The roofline for Intel Xeon i5-6400. The red marker shows the highest perfor-
mance achieved in our implementation, the green marker shows the maximum achieved
one thread performance.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

282



10 A. Perepelkina et al.

3.4 Performance Results

The described algorithm was implemented in code with the use of C++ (gcc
compiler version 6.3) with parallelisation with POSIX threads. Code generation
tools are made with Python3.6. Data visualization for verification of results uses
aiwlib library [6]. The performance scaling of D3Q19 LBM implementation was
verified on the Intel Core i5-4440 (2ch 32GB DDR3 RAM) and the Intel Core
i5-6400 CPU (2ch 64GB DDR4 RAM).

On Fig. 6 the cube shaped domain is scaled up to the maximum size that
still fits RAM memory. Starting from ∼ 2 MB data size the performance of
about 25% from the peak is reached. Despite the fact that low-budget CPU is
used, the achieved performance of > 0.25 GLUps (billions of Lattice Update per
second) may even be comparable to some GPU implementations. Note that the
performance rises with the increase of the data size. With stepwise approaches
without any kind of temporal blocking the performance drops each time the data
size exceeds some level of cache. For comparison, in [15] CPU kernels for 12 core
CPU Xeon E5-2690v3 reached ∼ 0.22 GLUps performance, while GPU kernels
reach 3 GLUps. Walberla framework reaches ∼ 0.08 GLUps on 8 core Intel Xeon
E5-2680 [3].

We have performed performance tests on one node of the K60 cluster [1]
(Intel Xeon E5-2690 v4, 8ch 256GB DDR4 RAM), and achieved the performance
up to 1.2 GLUps. Although the strong scaling efficiency is unsatisfactory in
this case, we see how the result may be improved. The LRnLA algorithm for
NUMA architecture is developed [20], but not implemented in the current code.
Nevertheless, the result of our CPU code for one node of K60 cluster is better
than the CPU version in [15] for one node of the Piz Daint supercomputer, and
∼ 42% of its GPU version.

On Fig. 7 the strong parallel scaling results are presented. The reason for the
low scaling efficiency (∼ 72%) is the significant influence of the boundaries on the
TorreFold algorithm. This may be improved by devising another implementation
pattern. However, it may be reasonable to leave the idle resources for background
tasks (i.e. MPI transfers) in larger codes.

 0

 50

 100

 150

 200

 250

 300

100KB 1MB 10MB 100MB 1GB 10GB

Pe
rf

o
rm

a
n
ce

, 
M

Lu
p
s

Data size (cube region)

i5-4440/DDR3
i5-6400/DDR4

Fig. 6. Performance dependency on the data size.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

283



LRnLA algorithm ConeFold for LBM 11

 100

 1000

 1  10

Pe
rf

o
rm

a
n
ce

, 
M

Lu
p
s

Threads number

i5-4440/DDR3
i5-6400/DDR4

2х Intel Xeon E5-2690 v4
linear scaling

Fig. 7. Performance dependency on the number of POSIX threads.

4 Conclusion

We have used the LRnLA algorithm ConeFold to make a high-performance LBM
simulation code. This approach optimizes the space-time traversal to take ad-
vantage of the memory hierarchy and all available levels of parallelism. The
algorithm has been augmented by the non-local vectorization method, which
not only increases the performance but also fixes the inability of performing
simulation in periodic domains.

The LBM method proved to be simple for implementation, and the propaga-
tion method that conforms with the ConeFold decomposition has been found. It
is interesting that the most memory-efficient propagation schemes of the step-
wise codes [2, 11] share the similarity with the method that arose naturally from
the scheme dependencies and data access locality requirements.

The roofline model of the target CPU was built and the estimation of the
code limits was aided by the LRnLA theory of algorithm construction. From
this analysis, we see the necessity of using 4D localization in the algorithm and
choose the parameters for parallelization.

We have measured the performance of the code on some low-cost CPU, and
the results that were expected from the roofline construction were achieved.
Namely, we have achieved > 0.100 GLUps performance per core, ∼ 0.3 GLUps
per CPU, which exceeds the results that were found in the published work.

This result proves the advantages of the LRnLA approach. Namely, the algo-
rithmic optimization is more important than the low-level considerations. The
algorithms are built independent of the numerical method and hardware but are
successfully adapted by taking account of dependency propagation speed and
operations count from the numerical method side and the hierarchy of memory
and parallelism from the hardware side.

As a further study, we aim to apply the method to more complex variations of
the LBM method, like free surface LBM or double distribution function methods.
Further, the optimizations of memory managing for sparse geometries and non-
uniform grids are apparent.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

284



12 A. Perepelkina et al.

The work is partially supported by the Russian Science Foundation (project
#18-71-10004).

References

1. Computational resources of Keldysh Institute of Applied Mathematics RAS, www.
kiam.ru

2. Geier, M., Schönherr, M.: Esoteric twist: An efficient in-place streaming algorith-
mus for the lattice boltzmann method on massively parallel hardware. Computa-
tion 5(2), 19 (2017)

3. Godenschwager, C., Schornbaum, F., Bauer, M., Köstler, H., Rüde, U.: A frame-
work for hybrid parallel flow simulations with a trillion cells in complex geometries.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. p. 35. ACM (2013)

4. Habich, J., Zeiser, T., Hager, G., Wellein, G.: Enabling temporal blocking for a
lattice Boltzmann flow solver through multicore-aware wavefront parallelization.
In: 21st International Conference on Parallel Computational Fluid Dynamics. pp.
178–182 (2009)

5. Heuveline, V., Latt, J.: The OpenLB project: an open source and object oriented
implementation of lattice Boltzmann methods. International Journal of Modern
Physics C 18(04), 627–634 (2007)

6. Ivanov, A., Khilkov, S.: Aiwlib library as the instrument for creating numerical
modeling applications. Scientific Visualization 10(1), 110–127 (2018)

7. Levchenko, V.D.: Asynchronous parallel algorithms as a way to archive effective-
ness of computations (in Russian). J. of Inf. Tech. and Comp. Systems (1), 68
(2005)

8. Levchenko, V.D., Perepelkina, A.Y.: Locally recursive non-locally asynchronous
algorithms for stencil computation. Lobachevskii Journal of Mathematics 39(4),
552–561 (2018)

9. Levchenko, V.D., Perepelkina, A.Y., Zakirov, A.V.: DiamondTorre algorithm for
high-performance wave modeling. Computation 4(3), 29 (2016)

10. Morton, G.M.: A computer oriented geodetic data base and a new technique in file
sequencing (1966)

11. Neumann, P., Bungartz, H.J., Mehl, M., Neckel, T., Weinzierl, T.: A coupled ap-
proach for fluid dynamic problems using the PDE framework peano. Communica-
tions in Computational Physics 12(1), 65–84 (2012)

12. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-D blocking optimiza-
tion for stencil computations on modern CPUs and GPUs. In: High Performance
Computing, Networking, Storage and Analysis (SC). pp. 1–13. IEEE (2010)

13. Perepelkina, A.Y., Levchenko, V.D., Goryachev, I.A.: Implementation of the ki-
netic plasma code with locally recursive non-locally asynchronous algorithms. In:
Journal of Physics: Conference Series. vol. 510, p. 012042. IOP Publishing (2014)

14. Perepelkina, A.: 3D3V kinetic code for simulation of magnetized plasma (in Rus-
sian). Ph.D. thesis, Keldysh Institute of Applied Mathematics RAS, Moscow (2015)

15. Riesinger, C., Bakhtiari, A., Schreiber, M., Neumann, P., Bungartz, H.J.: A holistic
scalable implementation approach of the lattice Boltzmann method for CPU/GPU
heterogeneous clusters. Computation 5(4), 48 (2017)

16. Shimokawabe, T., Endo, T., Onodera, N., Aoki, T.: A stencil framework to realize
large-scale computations beyond device memory capacity on GPU supercomputers.
In: Cluster Computing (CLUSTER). pp. 525–529. IEEE (2017)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

285



LRnLA algorithm ConeFold for LBM 13

17. Succi, S.: The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford
university press (2001)

18. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM 52(4), 65–
76 (2009)

19. Wittmann, M.: Hardware-effiziente, hochparallele Implementierungen von Lattice-
Boltzmann-Verfahren für komplexe Geometrien (in German). Ph.D. thesis,
Friedrich-Alexander-Universitt Erlangen-Nrnberg (2016)

20. Zakirov, A.V., Levchenko, V.D.: The code for effective 3D modeling of elector-
magnetic wavesevolution in actual electrodynamics problems. Keldysh Institute
Preprints (28) (2009)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

286


