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Abstract. Performance monitoring is a method to debug performance
issues in different types of applications. It uses various performance met-
rics obtained from the servers the application runs on, and also may
use metrics which are produced by the application itself. The common
approach to building performance monitoring systems is to store all the
data to a database and then to retrieve the data which correspond to the
specific job and perform an analysis using that portion of the data. This
approach works well when the data stream is not very large. For large
performance monitoring data stream this incurs much IO and imposes
high requirements on storage systems which process the data.

In this paper we propose an adaptive on-the-fly approach to performance
monitoring of High Performance Computing (HPC) compute jobs which
significantly lowers data streams to be written to a storage. We used this
approach to implement performance monitoring system for HPC cluster
to monitor compute jobs. The output of our performance monitoring sys-
tem is a time-series graph representing aggregated performance metrics
for the job. The time resolution of the resulted graph is adaptive and
depends on the duration of the analyzed job.

Keywords: Performance · Performance Monitoring · Adaptive Perfor-
mance Monitoring · Supercomputer · HPC

1 Introduction

Performance monitoring in High Performance Computing (HPC) is a method
to debug performance issues in different types of applications. It uses various
performance metrics obtained from the compute nodes the application runs on,
and also may use metrics which are produced by the application itself.

The common approach to building performance monitoring systems is to
store all the data to a database. After the job is finished the data for the spe-
cific job is retrieved from the database. Then per job derived metrics like value
average are calculated from the retrieved data. Those data are used to perform
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an analysis of the finished job. The overall picture is shown in Fig. 1. This ap-
proach works well when the data stream is not very large. For large performance
monitoring data stream this incurs much IO and imposes high requirements on
storage systems which process the data.

Fig. 1. Common approach to performance monitoring in HPC

Another approach may be to separate data for different applications and
store data for different applications separately. This is easy to implement if the
allocation of the resources to the applications is static and the rules to separate
data flows from different applications can be set up before the monitoring system
is started. But for HPC compute jobs the resources are assigned by the resource
manager just before the job starts. Therefore we can’t setup static separation of
data for different jobs.

In this paper we propose an approach to performance monitoring in the
case if the distribution of the resources to the applications is dynamic and may
change on-the-fly. We used this approach to implement performance monitoring
system for HPC cluster to monitor compute jobs. The output of our performance
monitoring is a time-series graph representing aggregated performance metrics
for the job which we call JobDigest [1]. The time resolution of the resulted graph
is adaptive and depends on the duration of the analyzed job. The proposed
approach is evaluated on Lomonosov-2, a largest Russian supercomputer.
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The contribution of this paper consists of two parts. First, we propose a
method for calculating performance monitoring metrics for HPC jobs on-the-fly
by dynamically reconfiguring data processing paths when a job is started or
finished. The performance data are analyzed without intermediate storing. This
method allows reducing the amount of IO operations for processing performance
monitoring data. Second, our approach automatically sets the time resolution
of the result data from as small as 1 second to greater values. This enables to
have the result of approximately equal size for every job without significantly
reducing the available information about jobs.

The paper is organized as follows. Section 2 presents common information
about performance monitoring in HPC and describes related work in field of per-
formance monitoring. Section 3 gives the details about our proposed approach to
calculating performance metrics on-the-fly. Section 4 gives an overview of making
time resolution of data for compute job adaptive and depending of job duration.
Section 5 describes the test performance monitoring system we implemented to
evaluate our approach, and section 6 contains the conclusion.

2 Background and Related Work

In HPC clusters when the compute job is ready to start, it is allocated a set of
compute nodes. In most cases a node is assigned exclusively to one job. When
the job is finished, the nodes assigned to it become free and will be allocated to
other jobs. The main object of the performance monitoring in HPC is a compute
job.

Many approaches to performance monitoring have been proposed. Some of
them are intended for inspecting only selected jobs. Most often whether the job
is to be evaluated is decided before the jobs is started. Such performance moni-
toring systems [2–7] start agents on nodes which are allocated to the inspected
job when the job is starting. In this approach only the data which are needed
to evaluate the performance of the selected jobs are collected. But with this ap-
proach it is not possible to determine the reasons why a job’s performance was
worse than it was expected if the job was not set up for performance monitoring
before the job was started. Another drawback of this approach is that the data
which require superuser privileges to collect are hard to get, as the job and the
monitoring agent are run by an ordinary user. And still the data in the database
is stored without a label which point to job ID which produced the data. When
a job is to be analyzed, the data are retrieved using time period and node list
as a key and performance metrics are calculated afterwards.

There also exist approaches [8, 9] which run agents on every node of the
compute system and store all the data into a database. When a job performance
metrics are to be inspected, the job’s data are retrieved from the database using
time period and node list when and where the job ran. This approach incurs great
amount of unnecessary data stored to the database. Indeed, all the data for the
jobs which will not be examined later would never be retrieved and are just a
waste of all type of resources: CPU to process, net to transmit, IO operations to
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save, and disk space to store. Moreover, as a database that stores all the data
for the compute system may become quite large, the time to retrieve data for
the specific job may become quite long, so saving all data creates unnecessary
delays when analyzing data.

These performance monitoring systems usually perform data averaging on
periods from 1 to 15 minutes. This period is chosen based on the amount of data
which the system can process.

3 Calculating Aggregate Performance Data for Compute
Jobs On-the-Fly

Our approach is to separate data flows for different jobs by marking them with
a label with job ID. When these separated flows are processed, the data for
different jobs are collected separately.

Every compute node runs a monitoring agent which retrieves performance
metrics for the OS and the hardware of the compute node. The agent sends the
data to a central (server) part of the monitoring system which calculates the
aggregated metrics. In our approach the monitoring agent is able to mark data
with a label with job ID, and this label can be set when the job is started on
the specific node and cleared when the job is finished.

Resource manager is the program component responsible for allocating com-
pute nodes to the compute jobs. Resource manager prologs and epilogs are the
programs (scripts) which are executed when a job is about to start or finish. We
use them to signal the monitoring agents on the nodes allocated to the job that
they should start or cease to label the data.

When the data labeled with a job ID is received in the server part of the
monitoring system, they are demultiplexed by the job ID and sent to a collector
responsible for collecting information for that specific job. When the job is fin-
ished, that object stores the collected data to the disk. Our approach is presented
in Fig. 2.

The monitoring agents on compute nodes retrieve data every 1 second and
send them to the server part of the monitoring system immediately after all the
metrics are collected. In the server part the data are aggregated over a short
interval (we use 1 second as an initial value). For every such interval and for
every performance metric we collect five aggregated metrics:

– Minimum value of the metrics over the interval

– Maximum value

– Average value

– Minimum of all nodes among average value for one compute node

– Maximum among averages for one compute node

The last two metrics are calculated as follows: first, we calculate an average
of values for the given performance metric for the given compute node. Then we

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

370



Adaptive on-the-fly Calculation of Performance Metrics for HPC Jobs 5

Fig. 2. The proposed approach to calculating per job performance metrics

calculate minimum and maximum among all compute nodes running the spe-
cific job. These metrics represent a measure of performance imbalance between
different nodes running one job.

With this approach we do not have to store large stream of raw data, and
then read it from disk thus creating large IO. Instead we collect all the data
and calculate derived aggregated metrics in memory. The final result is written
to disk only after the job is finished, and the size of the data written is much
smaller than the size of the raw data for the job.

4 Making Time Resolution of the Result Adaptive to the
Duration of the Compute Job

Another feature of our approach is a variable time period on which we do av-
eraging of raw data. When a job is started, this time period is set to 1 second.
Then we calculate predefined number (we use 1000) of samples for derived met-
rics. When the last sample is calculated, we merge every two adjacent samples
into one and double the averaging period. So for jobs shorter than 1000 seconds
we have aggregated metrics for averaging period of 1 second. For longer jobs
we have between 500 and 1000 samples for aggregated metrics and each sample
is done over 2n-second period (n is such an integer that job length L satisfies
500 · 2n < L ≤ 1000 · 2n).

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

371



6 K. Stefanov, Vad. Voevodin

This allows us to have detailed graphs for relatively short jobs. As the data
for every job is visualized in a browser, it is important not to have very large
number of data points for every chart, otherwise it will take too long to draw
the chart. Our approach gives a reasonable tradeoff between the need in detailed
time resolution of the data for every job and the performance of the visualization
part. And more, such an approach allows us to have upper bound on memory
consumption of the server part of the monitoring system for one running job. As
the data are collected in memory, this upper bound on memory consumption is
important.

Such an approach can be useful for analyzing performance of short jobs. For
example, a tool for anomaly detection is being developed in RCC MSU, which
uses monitoring data for detecting jobs with abnormally inefficient behavior [10].
This analysis is based on machine learning techniques that require a significant
amount of input data. Currently it is not possible to accurately detect abnormal
behavior in short jobs (less than approx. 1 hour) due to the lack of input data
from existing monitoring systems. Using the performance monitoring system
with the adaptive approach will help to eliminate such problem, still allowing to
analyze long jobs as well.

5 Evaluation of the Proposed Approach

To evaluate our approach we implemented performance monitoring system for
producing JobDigests for all compute jobs executing on a HPC cluster. Our
implementation is based on DiMMon monitoring system framework [11].

In DiMMon all processing of monitoring data (including data acquisition
from OS or other data sources) is done in monitoring nodes which operate in
a monitoring agent. A monitoring agent can run on a compute node or on a
dedicated server.

In our implementation every compute node runs a monitoring agent. Server
monitoring agent runs on a dedicated server. Compute node monitoring agent
contains nodes which acquire data from OS (sensor nodes), a node that prepends
a label with job ID to data, a node which transmit data to server monitoring
agent for processing, and a resource manager interaction control node which
receives notifications about job start and finish. Compute node agent structure
is presented in Fig. 3. Server monitoring agent structure is shown in Fig. 2.

We implemented prolog and epilog scripts for SLURM [12] resource manager.
The prolog script receives a list of nodes where the job is to be started. The
prolog notifies agents on the compute nodes that they should start to send the
performance data to server monitoring agent and that data should be marked
with job ID (”resource manager interaction” node receives these notifications).
It also notifies server monitoring agent that the job with given ID is about to
be started. The server agent programs its demultiplexer to create separate data
path for that job data. It also creates collector entity which will collect the data
for that job.
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Fig. 3. Compute node monitoring agent structure

The epilog script notifies agent running on compute nodes of the finishing
job to cease sending data to the server monitoring agent. It also notifies server
monitoring agent that the job is finished and the aggregated data for it should
be written to disk.

For evaluation we collect CPU usage level data and memory (RAM) con-
sumption data, 21 sensors in total. CPU usage level data provide information
about what fraction of CPU time is used for executing user mode code, operating
system, processing interrupts etc. There are 9 such sensors provided by modern
Linux kernels. Memory consumption data give the distribution of different type
of memory usage: free memory volume, the amount of memory used for file cache
etc. The data from the kernel is retrieved once every 1 second.

We run our performance monitoring system on Lomonosov supercomputer
and Lomonosov-2 supercomputers installed in M.V.Lomonosov Moscow State
University. Lomonosov is a cluster consisting of more than 6000 compute nodes.
Lomonosov-2 is a cluster consisting of more than 1600 compute nodes with peak
performance of 2.9 Pflops. These two machines execute about 100–200 parallel
jobs simultaneously each.

We run monitoring agents on every compute node and one server monitoring
agent. Compute node monitoring agents consume about 1 MB of RAM and less
then 0.1% of CPU time each. Server monitoring agent run on a server with 2
4-core Intel Xeon E5450 processors with 4 300 GB SATA disks connected as
RAID 10. Our monitoring agent is single-threaded, so it occupies only 1 core. It
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consumes about 60 MB of RAM and less than 20% of CPU (CPU consumption
depends on number of jobs running on the cluster at the moment). All data for
jobs executed in 1 week was about 1.6 GB in size. So our new system stores
about 11 MB of data per sensor per day.

The results are saved for every job as 5 collected aggregate values for every
sensor collected. It is presented to the user as a graph with 5 lines for a sensor.

For illustrating the advantages of our adaptive time resolution approach let us
present the comparison of the time series graphs for the same job produced by the
monitoring system described in this paper and the previous JobDigest system.
The previous JobDigest system has a fixed averaging period of 120 seconds for
every sensor of every job.

In Fig. 4 a part of the JobDigest for a compute job is given. The part consists
of the data for two sensors: CPU user load level and Free memory sensor (it gives
the amount of Free RAM as reported by Linux kernel). The averaging period
(time resolution of the graph) is 1 second. The job ran for 15 minutes.

The same graphs produced by the previous JobDigest system are given in
Fig. 5 for comparison. Differences in Y-axis scale is caused by the fact that the
previous JobDigest system presents CPU usage level in % (the range is 0–100)
and our currents system gives the same value in the range 0–1. The memory
volume for the previous system is given in kilobytes, and in the current system
it is given in bytes, so B (Billion) suffix instead of M (Million) for the previous
system is used.

We can clearly see the difference in time resolution. On graphs produced by
our systems one can identify stages and some other properties of the jobs being
evaluated, while the graphs produced by the previous system contain several
dots each and cannot reveal any details of the job run time behaviour.

To asses the volume of the data used by the performance monitoring system
based on our proposed approach let’s compare to other existing system, which
is now used for creating JobDigests [1]. That system creates approx. 2.1 GB of
data per day and stores min, max and average for every sensor (3 values) per
node every 120 seconds. It stores data of 27 sensors, so it stores approx. 80MB
per sensor per day. Our new system compared to the existing one stores more
than 7 times less data while maintaining time resolution up to 120 times better
(depends on job length).

6 Conclusion and Future Work

In this paper we present an approach for calculating aggregate metrics for HPC
jobs on-the-fly. We label the data for the job by a label based on job ID and
thus we may collect the data for separate jobs and store them in a database on
a per-job basis. This greatly reduces to requirements for the database to store
the collected data and allows us to save data with up to 1-second resolution on
an ordinary server.

Future work is to add more sensors to our performance monitoring system
including hardware processor performance counters. Another important area of
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Fig. 4. An example of JobDigest produced by our system
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Fig. 5. A JobDigest produced by previous system
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our work is to use the data produced by our new system as the input data for
various analysis tools like abnormal job detecton system described in [10].
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