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Abstract. Seismic imaging is the final stage of the seismic processing
allowing to reconstruct the internal subsurface structure. This procedure
is one of the most time consuming and it requires huge computational
resources to get high-quality amplitude-preserving images. In this paper,
we present a parallel algorithm of seismic imaging, based on the solution
of the one-way wave equation. The algorithm includes parallelization of
the data flow, due to the multiple sources/receivers pairs processing.
Wavefield extrapolation is performed by pseudo-spectral methods and
applied by qFFT - each dataset is processed by a single MPI process.
Common-offset vector images are constructed using all the solutions from
all datasets thus by all-to-all MPI communications.

Keywords: One-way wave equation · Pseudo-spectral methods · qFFT
· CUDA · Nested OMP · MPI

1 Introduction

Modern development of the supercomputers with hybrid architecture, especially
use of GPUs, leads to the revision of the numerical methods and algorithms
which were computationally inefficient and hard to implement using conven-
tional cluster architecture. Seismic imaging is the procedure to reconstruct the
interior structure of the subsurface which is based on the correlation of solutions
of direct and adjoint wave propagation problems. Traditionally three types of
approaches are considered. The first one is based on the asymptotic solution of
scalar or elastic wave equation; i.e. based on the ray theory [1]. The advantage
of this technique is the numerical efficiency of the solution construction, possi-
bility to store and combine a high number of ray paths and travel times, thus
selective images for different source-receiver offsets and azimuth as well as for
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different inclination angles of the reflecting surface can be constructed. In addi-
tion, ray tracing in models with local velocity decrease or in anisotropic media
where triplication of the wavefield may appear is troublesome. The second group
of methods is based on the full waveform simulation; i.e. on the solution of the
wave equation for all positions of the sources and receivers [2], [15], [14]. This
group is antipode to the first one, it is extremely computationally intense but
provides complete information about the wavefield. The third group includes
methods based on the solution of the one-wave wave equation (OWE) to gen-
erate the solution of direct and adjoint problems [4], [5], [13], [3], [17], [7], [12].
This approach is dealing with the pseudo-differential operator possessing solu-
tions propagating in the positive direction with respect to depth. OWE based
techniques are more computationally efficient than full-waveform simulations but
free from the drawbacks of the ray-based methods. However, use of conventional
CPU architecture made these type of approaches unattractive, because they
still required rather intense computations, but nowadays with intense part can
be done using GPUs, moreover, amount of available memory (either on device
and host) makes it possible to solve OWEs for a large number of right-hand sides
forming images for different source-receiver offsets and azimuths. In this paper,
we present an algorithm implementing the third type of methods. We use the
pseudo-spectral method, based on the intense use of FFT procedures, to solve
OWE, thus we achieve high performance by implementing CUDA technology
and qFFT.

2 Mathematical background

2.1 One-way wave equation

One-way wave equation is a non-local pseudo-differential operator, governing
down-going wave propagation:

∂u
∂z + i

√
ω2

v2(x,y,z) + ∂2

∂x2 + ∂2

∂y2u = 0,

u(ω, x, y, 0) = u0(ω, x, y),
u(ω, x, y, z)→ 0|x→±∞,
u(ω, x, y, z)→ 0|y→±∞.

(1)

We consider this equation defined in a domain D = {(x, y, z)| x ∈ R, y ∈ R, z ∈
[0, Z1]}. In this notations x and y denote the coordinates in horizontal direction,
z is vertical coordinate, u is a wavefield, ω ∈ [Ω1, Ω2] is the temporal frequency,
0 < V1 ≤ v(x, y, z) ≤ V2 < ∞ is the wave propagation velocity. Throughout
the paper we will assume that the velocity is smoothly varying, because dealing
with discontinuous coefficients for wave propagation requires additional study
and special treatment of the coefficients [9], [8], [10], [6], [16].

Our goal is to solve problem (1) inside the domain D0 = {(x, y, z)| x ∈
[X0, X1], y ∈ [Y0, Y1], z ∈ [0, Z1]} ⊆ D so that the solution to be accurate for
propagation direction deviating from vertical by the angle α ≤ 50◦.
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Solution of the one-way wave equation can be computed layer-by-layer with
respect to depth. In particular, we suggest using the pseudo-spectral method with
the sixth order of approximation with respect to the direction of wave propaga-
tion (inclination from the vertical direction) [11], [12]. Assume the wavefield at
the level z = z0 is known then the solution at the level z = z0 +∆z is computed
by the following rule:

ũ(ω, x, y, z0 +∆z) = α0u(ω, x, y, z0)+
+αj(ω, x, y, z0)uj(ω, x, y, z0 +∆z) + αj+1(ω, x, y, z0)uj+1(ω, x, y, z0 +∆z),

(2)
where velocity in the particular point (x, y, z) belongs to an interval between
two reference velocities; i.e. v(x, y, z) = v0 ∈ (vj , vj+1). Functions uj and uj+1

are the solutions of the one-way wave equation with constant velocities vj and
vj+1; computed by the formulae:

uj(ω, x, y, z0 + dz) = F−1x,y

[
eik

j
zdzFx,y [u(ω, x, y, z0)]

]
, (3)

with

kjz = sign(ω)

√
ω2

v2j
− k2x − k2y. (4)

Coefficients αj and αj+1 are

αj =
v0

[
v2j+1

(
1− iωdz

vj+1

)
− v20

(
1− iωdz

v0

)]
vj

[
v2j+1

(
1− iωdz

vj+1

)
− v2j

(
1− iωdz

vj

)]eiωdz
v0
−iωdz

vj , (5)

αj+1 =
v0

[
v20

(
1− iωdz

v0

)
− v2j

(
1− iωdz

vj

)]
vj+1

[
v2j+1

(
1− iωdz

vj+1

)
− v2j

(
1− iωdz

vj

)]eiωdz
v0
−i ωdz

vj+1 , (6)

α0 = ei
ωdz
v0 − αje

iωdz
vj − αj+1e

i ωdz
vj+1 . (7)

Thus to compute solution at a depth level z = z0 + ∆z with variable veloc-
ity one needs to update the a set reference solutions and then construct linear
combinations in each point at the plane (x, y, z0 +∆z).

As discussed in [12] wavefield depth extrapolation by pseudospectral method
and its modifications, such as phase-shift plus interpolation approach, can be
applied using very coarse discretization in vertical direction. In particular, in
our algorithm we use ∆z = 50m. Whereas the images are constructed on a mesh
with the step as small as 5m. To interpolate the solution we use the following
formulae:

u(x, y, z0 + γ∆z, ω) =

= (1− γ)u(x, y, z0, ω)e
iω

v(x,y,z0)
γ∆z

+ γu(x, y, z0 +∆z, ω)e
iω

v(x,y,z0)
(1−γ)∆z

here γ ∈ [0, 1] and v(x, y, z) is assumed to be independent of z within the slab
[z0, z0 +∆z].
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2.2 Imaging condition

To construct the seismic image at a point (x, y, z) one needs to precompute
the Green’s functions for source and receiver positions G(x, y, z, xs, ys, ω) and
G(x, y, z, xr, yr, ω) respectively, and then convolve them with the wavefield, recorded
in the receiver φ(xs, ys, xr, yr, ω); i.e.

I(x, y, z, xs, ys, xr, yr) =

=
ω1∫
ω0

Ḡ(x, y, z, xs, ys, ω)φ(xs, ys, xr, yr, ω)Ḡ(x, y, z, xr, yr, ω)dω,
(8)

where ω0 and ω1 define the frequency range, and Ḡ denotes the complex conju-
gate of the Green’s functions.

Seismic data acquisition typically includes dozens to hundreds thousands of
sources and receivers, thus different images can be computed; i.e.

Ik(x, y, z) =
=
∫
(xs,ys)∈Ωk

s

∫
(xr,yr)∈Ωk

r
I(x, y, z, xs, ys, xr, yr)dxsdysdxrdyr,

(9)

where Ωkr and Ωks where can be defined according to the particular needs of
seismic processing. Moreover, we use superscript k to denote that usually more
than one image is constructed, depending on the processing procedures.

One of the most widely-used seismic images are the common-offset vector
images, where the distance between source and receiver positions is fixed whereas
parametrization of the image is implemented via mid-points between the sources
and receivers. So, that fixed superscript k means that for all points (x, y, 0) one
considers pairs of sources and receivers, for which this point is the midpoint and
the distance and direction between the pair is fixed, One computes images for
all such pairs and then integrates over all points (x, y, 0).

3 Description of the algorithm

3.1 Dataflow

Before proceeding to the description of the computational aspects of the algo-
rithm let us consider the data flow, and estimate the typical amount of data. The
input data are seismograms acquired in the field. These data are usually viewed
as a 5D cube; i.e. for each source position (2D space), for each receiver position
(2D) a single trace is recorded (1D). Typical acquisition system includes dozens
to hundreds of thousands of sources and receivers. Let us denote the number of
sources and receivers by Ns nad Nr respectively, usually Ns ≈ Nr = 104 − 105.
The length of the trace record Nt is about 103. Thus the volume of the input
data varies from 1 TB to 100 TB.

Output data are the set of common-offset vector images. For modern acqui-
sitions, more than 100 images are constructed. Estimate the size of the single
image. Typically the domain is about 15 to 20 km in horizontal directions and
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5 km in the vertical one. Using the grids steps equal to 25 m in horizontal and
5 m in vertical direction one finishes up with the size of the domain of 0.5 · 109

points, or 2 Gb per a single image.

One of the principal aspects of the seismic imaging is that each source/receiver
is used to compute all the output images. Thus even if data can be split into
several datasets, each dataset will be used to compute all images, and the best
hypothetical algorithm would be able to process whole data and provide the
complete set of images. However, this is not affordable by modern computers,
and we suggest algorithm which operates independently with several datasets,
intensively use MPI communications, and provide several images corresponding
to these datasets. A sketch of the data flow is provided in figure 1.

Dataset 1 Dataset 2 Dataset Q

BLACK BOX

Image 1 Image 2 Image M

Fig. 1. A sketch of the data flow in the seismic imaging algorithm

3.2 Hypothetical sequential version

To simplify the description the parallel version of the algorithm for seismic imag-
ing, let us consider a simple sequential version first. Assume a whole input seismic
data, Green’s functions for all sources and receivers positions, and all constructed
seismic images can be stored in RAM. In this case, the algorithm will have the
following structure. The outer loop is the integration with respect to the time
frequencies. For each time-frequency we use a loop with respect to depth; i.e. we
compute the Green’s functions for all sources and receivers positions, combine
them and multiply by the corresponding signal. Thus at fixed depth level we con-
struct all possible images Ik(x, y, zl, ωm). Next we interpolate images within the
slab [zl−1, zl]. Repeating this procedure for all frequencies and all depth layers
we obtain all common-offset vector images at the same time.
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However, as it follows from the estimates, presented in the previous section,
the sequential version of the algorithm cannot be implemented using modern
computers. Because, it requires storage of all fixed-depth 2D cross-section of the
Green’s functions Let us remind that the number of the sources and receivers
is about 105, the size of single 2D cross-section of the Green’s function is about
106 points, which leads to the estimate of 8 Mb per Green’s function (single
precision complex numbers). Thus storing all Green’s functions would require
800 Gb, which is unacceptable. To overcome this and design parallel algorithm
we suggest consider relatively small datasets, which fits the devise memory and
process each dataset in parallel.

3.3 Datasets construction

Construction of the datasets can be explained on the physical aspects of the
solved problem. It can be viewed as a 2D domain decomposition of the acquisition
system. As mentioned above the imaging domain can be parametrized by the
coordinates of the mid-points, so we apply the 2D domain decomposition and
consider all the sources and receivers corresponding to the mid-points belonging
to a single subdomain as a single dataset. Note, that the size of subdomains
is restricted by the amount of the memory per single GPU because the main
computations are done on GPUs. Assume a single have N allocated sources
and receivers, thus N 2D cross-sections of the Green’s functions have to be
computed and stored. Due to the typical geometry of the acquisition system, the
size of the subdomain rarely exceeds 512 by 512 grid points. Thus the amount of
memory, needed for computations is 1

48N = 2N Mb. Thus we can simultaneously
operate from 2000 to 4000 Green’s functions using modern GPUs. Additionally,
for each subdomain, we need to construct a set of 2D slices of the images at
each depth layer. The number of images hardly exceed 100, thus we can neglect
this amount. A single 3D image for the whole domain should be stored in RAM,
which requires, as estimated above, up to 4-8 Gb of RAM and it is independent
on the datasets.

Division of the data leads to the significant loss of the algorithm scaling
if compared with the hypothetical sequential one. This happens because some
of the sources/receivers belong to several datasets, thus we need to compute
the Green’s functions for these sources/receivers several times, whereas in the
hypothetical algorithm we would do it only ones. In our, numerical experiments,
we achieve the number of the Green’s functions recomputations as low as 2.3 in
average. Examples of the datasets for synthetic SEG Salt marine data and for
onshore field data are provided in figure. 2

3.4 Parallel algorithm MPI+OMP+CUDA

The parallel algorithm is similar to the sequential one, described above, but each
MPI process operates with a single dataset. The block-scheme of the algorithm
is provided in figure 3. So, the input data for a single MPI process is a single
dataset. We perform the integration with respect to time-frequency in the outer
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Fig. 2. Examples of the datasets (coordinates of the mid-points) for SEG Salt model
(left), and real onshore seismic data (right).

loop. Then we use the loop with respect to the depth layers. We use GPU to
compute the set of 2D cross-sections of the Green’s functions (let us assume we
proceed from layer zj to zj+1). Computations are based on the intense use of 2D
qFFT. The set of images at the layer zj+1 are also computed by GPU. After that
2D slices of images are passed to RAM. While GPU constructs the solutions and
images at the layer zj+1, CPU sorts the 2D cross-sections of the images, use MPI
send/recv to exchange the 2D cross-sections of images with other MPI processes,
so that single-offset vector images for all datasets are accumulated by a single
MPI process. After that, we use CPU to interpolate the accumulated image
within the slab [zj−1, zj ] and sum it up to the final image. So, the results of
one step with respect to the depth for a single MPI process are: set of 2D cross-
sections of the Green’s functions (all offsets, single dataset) at layer z = zj+1;
full set of 2D cross-sections of the images (all offsets, single dataset) at layer
z = zj+1; a single common offset image for all datasets on a fine grid within a
slab [zj−1, zj ].

4 Numerical Experiments

4.1 Weak Scaling

Structure of the algorithm makes it difficult to estimate the strong scaling in its
classical meaning; i.e. fixing a size of the problem and increase the number of MPI
processes. However, we can estimate weak scaling, because increasing the number
of MPI processes we process a larger number of datasets. We consider the SEG
Salt model, for which we compute 17 images, having 2600 datasets. We perform
simulations using 17, 34, 51, and 68 MPI processes. This means that a single
node deals with one dataset at a time, but only 17 of them compute images.
Measured times are provided in table 1. The loss of the efficiency is caused
by the MPI exchanges, which are implemented with enforced synchronization.
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Fig. 3. A block-scheme of the parallel algorithm

Moreover, this algorithm allows using non-blocking procedures Isen/Irecv which
can be performed during computations, however, in the presented version of the
algorithm, it is not implemented.

Table 1. Computation time for weak scaling estimation.

17 proc 34 proc 51 proc 68 proc

Time (hours) 1.91 2.22 2.64 3.02

W scaling (%) - 86 72 63

4.2 Images Construction for SEG Salt model

We use the algorithm to compute the image for the SEG Salt model with pre-
computed seismic data. The size of the model is 7980 m InLine (x-direction) and
7920 m CrLine (y-direction). The depth of imaging is 4000 m. We use the grid
with the steps 20 by 20 meters in horizontal directions. Computations are done
on a grid with step 50 m in the vertical direction, whereas the image is con-
structed on a grid with the step of 5 m in the vertical direction. We compute 17
common-offset vector images using 2600 datasets. We perform simulations using
51 nodes. Total computation time, was slightly less than the estimate, coming
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from table 1. So, the total computation time is 5032 core-hours. We provide the
2D cross-sections of the model and the image in figure 4

Fig. 4. Cross-sections of the SEG Salt model (left) and corresponding image (right),
along a cross-line (upper row) and in-line (lower raw).

4.3 Real-data example

The second numerical experiment is done to construct the seismic image using
real onshore seismic data. The size of the model is 15525 m InLine (x-direction)
and 11250 m CrLine (y direction), depth is 5000 m. We use the grid with the steps
25 by 25 by 50 m for computations and 25 by 25 by 5 m for image construction.
We compute 40 common-offset vector images, using 320 datasets. The geometry
of the datasets is provided in figure 2. We use 40 nodes for simulations; i.e. equal
to the number of images. One simulation takes almost 40 hours, thus total wall-
clock time is about 320 hours, which leads to the 11520 node-hours to construct
the set of 40 images. A slalom-line section of the obtained 3D seismic image is
presented in figure 5.

5 Conclusion

We presented an original algorithm of seismic migration, based on the solution
of one-way wave equation. The algorithm combines MPI, OMP, and CUDA
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Fig. 5. Slalom-line section of the obtained 3D seismic image.
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technologies. Dataflow is parallelized via MPI, so that each node deals with a
single dataset. For computations of the Green’s functions and the images for
the dataset are performed by GPU. After that, the images are passed between
the nodes using MPI. Additional, computations and I/O are implemented via
OMP technology. As the result, we are able to compute the common-offset vector
images by means of solving one-way wave equation, which is more accurate and
informative than images constructed by conventional ray-based techniques.
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