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Abstract. The partitioned approach in fluid-structure interaction prob-
lems makes it possible to perform computations in fluid and structure in-
dependently of each other with implicit coupling at the interface bound-
ary. Implicit coupling between physical problems involves solving a non-
linear interface system of equations. The article deals with quasi-Newtonian
algorithms for solving nonlinear systems of equations. Comparison of ef-
ficiency is shown for solving fluid-structure interaction problems with
different degrees of nonlinearity.

Keywords: Parallel computing · HPC · Fluid-structure interaction ·
Quasi-Newtonian methods · Nonlinear systems.

1 Implicit Coupling Schemes

The problems of numerical simulation of the interaction between a deformed solid
and a fluid are actual. This is due to the development of methods, algorithms
and computer systems. Fluid-structure interaction (FSI) problems are complex,
as they require a joint solving both the equations of solid dynamics and the
equations fluid dynamics.

Partition approach [1] of the solving FSI problems allows each problem to
solve independently by the most appropriate method with using own parallelism
model.

In this case, the system of equations of fluid dynamics is solved by arbitrary
Lagrangian-Eulerian finite-volume methods within OpenFOAM [2]. Paralleliza-
tion is carried out using MPI. The problem of deformation of a solid is solved
by a finite-element packet FEStudio [3]. Within FEStudio, the stages of solving
the problem are paralleled based on OpenMP and CUDA.

Fluid-structure interaction problem at the time t+∆t with strong coupling
approach in operator form is a solving of a nonlinear system (N ) and it is wrote
as follows:

t+∆t
uS = S ◦ F

(

t+∆t
u
(k+1)
S

)

,

where k — iteration number of the interface system solving on step ∆t, S —
dynamic problem of the solid mechanics, uS — its solution, F — fluid dynamics
problem.

⋆ Supported by RFBR (projects: 16-01-00129, 17-01-00402).
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Fig. 1. Algorithm of the solving FSI problem in strong coupling approach

Matching solutions on interface border of two physical problems can be of
two types: weak and strong. In the case of strong matching, several exchange
are used on each integration time step. This provides a stronger couple between
approximate solutions of physical problem. With this matching, a nonlinear in-
terface system of equations must be solved (operator N , fig. 1).

Usually, the solving of the nonlinear interface system of equations is carried
out by classical iterative methods such as method of the fixed-point iterations
with acceleration, Gauss-Seidel method or methods of Newtonian and quasi-
Newtonian type. In this article, different quasi-Newtonian methods of the solve
nonlinear systems are considered as well as ways to reduce computation effort
and ways parallelizing the algorithm are represented.

Minimizing of costs on the solving interface system is achieved on the one
hand through the use of effective algorithm for solving nonlinear systems of the
equation (this reduce the number of arithmetic operations), on the other hand
cutting computation time by parallelizing the operations of the algorithm.

2 Algorithms for solving the interface system

Each application of FSI program model uses own parallel model, an indepen-
dent parallel implementation of the numerical methods and algorithms, and own
requirements for a parallel execution environment. Therefore, the solving of the
interface nonlinear system should be based on the reduction of the dependent
components intended for solving physical problems. Based on the limitations
associated with the independence of methods for solving problems in various
physical domains, in this paper we consider several methods that satisfy these
constraints: the fixed-point iteration method with the Anderson acceleration [4]
and quasi-Newton methods (the Gauss-Seidel method and the generalized Broy-
den method).
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As opposed to the Gauss-Seidel method, the generalized Broyden method is
characterized by rapid convergence. Also, it use a several previous solutions for
approximation of the Jacobian. This algorithms are described in [5,6].

Algorithm 1: Fixed-point iteration algorithm with Andersen acceleration

1 u(k) = u0, m
(k) = 0, mmax > 0

2 u(k+1) = S ◦ F
(

u(k)
)

3 R(k) = u(k+1) − u(k)

while ||R(k)||2 > ε do

4 k = k + 1

5 g(k) = S ◦ F
(

u(k)
)

6 G(k) = (gk−m(k)

, . . . , g(k))

7 f (k) = g(k) − u(k)

8 F (k) = (fk−m(k)

, . . . , f (k))

Compute QR factorization for F (k):
if k=1 then

9 F (1) = QR, Q = f (0)/‖f (0)‖2, R = ‖f (0)‖2

if k>1 then

F (k) = QR, where Q and R update as follows:
10 for i = 1 : m(k)

-1 do

11 R(i,m(k)) = Q(·, i)T ∗ f (k−1)

12 f (k−1) = f (k−1) −R(i,m(k)) ∗Q(·, i)

13 Q(·,m(k)) = f (k−1)/‖f (k−1)‖2, R = ‖f (k−1)‖2

14 α = R−1 ∗QT ∗ f (k)

15 u(k+1) = S ◦ F
(

u(k)
)

−G(k) ∗ α

16 R(k) = u(k+1) − u(k)

Let’s consider in more detail algorithm of the fixed-point iteration method
with Anderson acceleration, adapted to the solving of the fluid-structure interac-
tion problem (Algorithm 1). The most costly part of this algorithm is solving of
the problem of minimizing the functional. Its solves by the least squares method,
based on the QR factorization with the decomposition obtained by the House-
holder reflections.

The convergence rate of algorithms was compared on the tests systems pre-
sented in the work [7]. Obviously, the convergence depends both on the initial
approximation and on the parameters used in the algorithms (the value of the
relaxation parameter ω, the number of solutions used for the Jacobian approxi-
mation, etc.). In a number of systems, it was not possible to achieve significant
convergence results for any of the considered algorithms and variations of their
parameters (see (1)). This is primarily due to the high stiffness of the system of
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equations (as a rule these are systems with logarithmic and exponential functions
and their variations).

Test 209 Test 210

fi =

{

x2
i
− i, i = 1;

x2
i−1 + ln(xi)− 1, i = 2, n.

fi = ecos(i Σ
n

k=i
xk), i = 1, n.

(1)

On the systems that are close in stiffness to the interface systems obtained
in FSI problems (see (2)), a high rate of convergence showed by algorithm based
on the fixed-point iteration method with Anderson acceleration. Thus, with the
size of the problem is 103 equations, the error of the solution compose less then
10−8 for the test system “Test 212”, based on this algorithm, was obtained in 8
iterations, based on the Gauss-Seidel method for 79 iterations, and the accuracy
obtained by the Broyden method for 1000 iterations is about 10−2.

Test 202 Test 212

fi =

{

xi − 0.1x2
i+1, i = 1, n− 1;

xi − 0.1x2
1, i = n.

fi =

{

xi, i = 1;

cos(xi−1) + xi − 1, i = 2, n.

(2)

An estimate of the rate of convergence for the “Test 202” system showed:
the Anderson acceleration method – 5 iterations, the Gauss-Seidel method – 75
iterations, the Broyden method – 13 iterations.

Let’s consider possibilities of parallelization of the considered algorithms. Let
us compare the total time spent on solving the interface system of equations by
the example of solving FSI with different degrees of nonlinearity.

3 Parallel effectiveness of algorithms and numerical

simulations

In the considered algorithms, vector computations occupy a significant part.
Parallelizing vector calculations such as multiplying a vector by a scalar, adding
and subtracting vectors, dot product, the assignment operation involves using a
loop over vector elements, which naturally allows them to be parallelized using
OpenMP.

In the Anderson acceleration algorithm (Algorithm 1), QR factorization is
constructed, this process is the most costly operation of this algorithm. However,
the feature of the Anderson acceleration algorithm lies in the fact that the size
of the matrix F (k), the factorization of which must be constructed, increases
by one for each iteration and does not exceed mmax. This feature allows us to
replace the factorization procedure for the matrix F (k) on each iteration, whose
complexity is of the order of O(2/3m3) for the recalculation of the matrices Q
and R (Algorithm 1, the line 10 – 13) whose complexity is O(2m). Thus, the
formation of the matrix F (k) and its decomposition into Q and R is carried out
gradually, as the new components of the matrix F (k) are computed.
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A comparison of the efficiency of the considered methods for solving a non-
linear system of equations was carried out on several problems with different
stiffness. The first test problem describes the interaction of a nonstationary su-
personic gas flow and a deformable cantilever in a shock tube. A detailed de-
scription of the problem, as well as the results of experimental and numerical
studies can be found in [8,9].

Table 1 represents the number of iterations of the interface system solving,
the average execution time of one iteration, and the total time of solving of one
time step ∆t.

Table 1. Average integration time of step ∆t, ρs/ρf = 7.8

Aitken Time of iteration, s Number of Total time, s
acceleration 1×thread 8×threads iterations 1×thread 8×threads

Gauss- – 6.5 3.1 47 338.4 147.6
Seidel + 6.9 3.2 42 310.8 132.2

Broyden – 12.2 5.7 14 184.4 83.8
+ 12.5 5.9 13 175.5 85.3

Anderson – 19.2 8.4 9 152.8 75.6

As can be seen from the Table 1, the use of Aitken’s acceleration makes
it possible to reduce the number of iterations, but increases the time spent
per iteration due to additional vector computations. Despite this, a decrease of
even one iteration reduces the overall solving time. The using of multithreading
in vector operations also reduces the execution time of one iteration and the
total time of the system solving. A small acceleration obtained with the use of
eight OpenMP threads is explained by the small sizes of the vectors (about 103

equations).
In the second test, we considered the problem of interaction of flow of an

incompressible viscous fluid flowing with a hollow cylinder fixed from two ends,
described in detail in [10,11].

Table 2. Average integration time of step ∆t, ρs/ρf = 1.2

Aitken Time of iteration, s Number of Total time, s
acceleration 1×thread 8×threads iterations 1×thread 8×threads

Gauss- – 16.8 4.1 50+ 855.1 211.2
Seidel + 17.3 4.4 50+ 885.6 224.7

Broyden – 17.7 3.9 36 651.6 147.3
+ 18.2 4.1 36 662.4 149.1

Anderson – 28.1 6.9 19 533.9 131.1

The simulation results for the flow of an incompressible fluid flow in an
elastic cylinder showed (Table 2) that the system solving based on the Gauss-
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Seidel algorithm was carried out in more than 50 iterations. The system solving
based on the generalized Broyden secant algorithm, when simulating the same
problem, was performed on an average of 36 iterations. Despite the fact that the
number of arithmetic operations in the Broyden algorithm is greater, reducing
the total number of iterations leads to a reduction in the total computational
time. Coupling based on the Anderson acceleration algorithm showed that, on
average, the system solution was performed in 18–19 iterations. The acceleration
obtained by using of eight OpenMP threads is about 4 times and more than 6
time from the Gauss-Seidel algorithm.

The considered algorithms for implicit coupling were used to numerical sim-
ulation of the physical experimental investigation of the interaction of the vi-
brating console plate with a layer of viscous liquid deposited on its surface [12].
Forced vibrations of a plate with a frequency of 4.5 kHz are excited by a piezo-
electric element, with a cantilevered plate. The figure 2 a) shows the result of the
experiment performed for the vacuum oil. At the excitation of vibrations, vis-
cous liquids applied as a thin layer on the plate surface initially flow to the plate
surface areas with the antinodes of vibrations taking a convex form. The coupled
solution of the problems is carried out on hexahedral non-matching meshes with
a size of 1300000 cells for the fluid dynamics problem and 23,000 cells for the
dynamic problem of the solid.

a)

c)

b)

d)

Fig. 2. a) the droplet of vacuum oil on the vibrating plate a) in one of the experiments
described in [12], b) in numerical simulation; c) transverse distribution of displacement;
d) longitudinal bending of the vibrating plate, at a scale of 20 in 1.

To describe the droplet dynamics, we used two immiscible incompressible
fluids, the motion of each is described by the system of Navier-Stokes equations,
with the conditions of dynamic equilibrium at the interface. The discretization is
based on the use of the Volume of Fluid method [13]. To determine the dynamics
of the interface boundary and its geometric characteristics solves the transfer
equation for a scalar indicator function α be meaningful of volume concentration.
Differential operators approximation is performed by the finite volume method
using the front artificial compression method to calculating the α field.
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The elastodynamic problem is solved by the finite element method taking
into account geometric and physical nonlinearity. It is important to note that
the vibrations of a thin plate in the form of the superpositions of longitudinal
(see Fig. 2 d)) and transverse (see Fig. 2 c)) waves allow obtaining stable droplet
patterns (see Fig. 2 b)) which cannot be formed on an underformed substrate.

The computational complexity of the fluid-structure interaction problem is
determined by solving physical problems of the solid dynamics and, for the most
part, solving the hydrodynamic problem. The solution of the elastodynamic
problem is carried out by the explicit integration scheme, which ensures high
parallel efficiency. However, the low parallel efficiency of the algorithms used in
solving the hydrodynamic problem has a significant influence both on the so-
lution time and on the overall parallel efficiency. Therefore, schemes of implicit
coupling, with a reduced number of iterations, based on Broyden’s algorithms
and Anderson’s acceleration, show high efficiency and significantly reduced the
time for the solution matching. At the same time, the simulation results showed
well matching of the obtained solution with the experimental data.
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