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Abstract – The Digital Twin is a hierarchical system of mathematical models and computa-

tional methods, which provides near real-time synchronization between the state of the real-

world process and its virtual copy. It can be represented as a computational workflow, 

where the nodes are the computing services and other digital twins linked together by the 

data flow. The distinguishing characteristic of the digital twin is its capability to capture, 

transfer, and analyze real-time streaming data from Industrial Internet of Things equipment. 

Scientific workflow management systems could be used to design and deploy digital twins. 

But they have limited capabilities to integrate the streaming data flows and rely on tightly-

coupled relations between computational services. In this paper, we propose an Event-

Driven Approach to solve these limitations combining the power of scientific workflows, 

the flexibility of containers technology, and robustness of the distributed streaming ap-

proach. We also provide a reference implementation of this approach by developing new 

actors to extend Kepler scientific workflow management system capabilities to support data 

stream consumption and production operations using Kafka framework. This approach al-

lows us to develop a workflow as a set of loosely coupled services (Micro-Workflows, in-

spired by Microservices) that deployed inside Docker containers and communicate through 

streaming middleware. 

Keywords: Digital Twin  Microservice  Micro-Workflow  Scientific Workflow  Kafka  Kepler  

Docker  Streaming. 

1 Introduction 

Over the last 5 years, we observe an exponential growth in the field of "Smart Production" con-

cept [1]. Currently, we identify several global-level programs that are focused on its development, 

such as “Industry 4.0”, developed in Germany, “Smart Manufacturing Leadership Coalition” in the 

United States, “Digital Economy” program in the Russia, etc. All those programs use software and 

hardware systems to analyze data from several types of sensors by various types of models: mathemat-

ical, computational, data, etc. In the “Smart Industry”, a set of such models is called "Digital Twins" 

(DT) - virtual models, representing processes, systems and equipment. 

According to Glaessgen and Stargel [2], DT is an integrated multiphysics, multiscale, probabilis-

tic ultra-realistic simulation of an end-product or system that uses the best available physical models 

and sensor updates to mirror the life of its corresponding physical twin. The DT concept contains three 

main parts [3]: physical products in a real space; virtual products in a virtual space, and connections of 

data and information that ties the virtual and real products together.  

DT uses data gathered from the sensory systems on production lines to predict failures of machin-

ery, optimize the quality of the products, and reduce the ecological footprint from facilities. Gartner 

[4] predicts that by 2021, half of the large industrial companies will use DTs, resulting in gaining a 

10% improvement in effectiveness.  

DT applies mathematical models for simulation of the processes using methods such as data min-

ing, finite element analysis, etc. [5], which define specific requirements for the computational re-

sources. For example, data mining methods require a high volume of high-throughput storage re-

sources, supporting the “Active Storage” paradigm [6]. Models that use finite element method would 

require high-performance computing systems (or supercomputers) [7].  

DT can be described as a sequence of jobs that perform required functionality linked together by a 

set of edges that represent data dependencies between jobs. Such an approach can be implemented as a 

scientific workflow (SWF) [5], [8]. SWF is defined, managed, executed, and monitored by Scientific 
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Workflow Management Systems (SWfMS), such as DiVTB [9], Pegasus [10], Kepler [11], 

ASKALON [12], and tGSF [13], [14]. 

SWfMS can manage the automation of the required experimental scenario for the complex e-

Science and data-driven systems (such as DTs). It makes scientists focus on their research and not on 

details of computation management. For example, Pegasus framework allows users to represent work-

flows at an abstract level, while it takes care of the particulars of the execution systems [15]. Similary, 

the main goal of the Kepler SWfMS is to support different execution scenarios [16].  

In the streaming and cluster-computing frameworks such as Spark, Flink [17] and CA-DAG [18], 

[19], the context is different. They rely on fine tuning of execution parameters and in-depth under-

standing of the underlying architectural choices. The same challenges occur with the Google Cloud 

Dataflow [20], which is limited to the usage of the Google Cloud computational resources. In Kepler, 

a user can develop and use his own modules to manage different execution behaviors in different envi-

ronments, including private computational resources [16]. 

On the other hand, the distinguishing characteristic of the DT is its capability to capture, transfer, 

and analyze real-time streaming data from Industrial Internet of Things (IIoT) equipment for tuning 

and actualization of their virtual state [21]. 

To implement this, we need to face two significant challenges: heterogeneity of instrumentation 

and complexity of data stream processing [22]. An ideal solution to these challenges is a streaming 

data middleware providing modularity, flexibility, and control over complex data interactions [23]. 

Currently, the vast majority of the SWFs supports the execution of legacy applications that are or-

chestrated as scripts operating on files [24]. The data streaming is not fully-featured in SWfMS. The 

only example of data streaming implementation in SWfMS is input data streaming and visualization 

implemented by Kepler [25]. Unfortunately, output data streaming feature is not supported.  

SWfMS is formerly applied over a number of execution environments such as workstations, clus-

ters/Grids, and supercomputers. But running one large-scale SWF in these environments faces a series 

of obstacles. For example, the limitations appear, when we deal with big data problems, including data 

scale and computation complexity, resource provisioning, and collaboration in heterogeneous envi-

ronments [26].  

The containerization approach arises as a potential solution to this problem [27]. Also, in SWF, 

tasks are tightly coupled with each other. These architectural features of SWF often conflict with the 

loosely coupled distributed applications such as extremely loosely coupled and highly distributed 

Event-Driven Architecture (EDA) approach [28].  

In this paper, we propose an EDA to implement DT that combines the power of scientific work-

flows, the flexibility of containers technology, and robustness of the distributed streaming approach. 

We also provide a reference implementation of this approach extending Kepler SWFMs capabilities 

and developing new Kepler actors to support stream consuming and producing operations with mod-

ern Kafka streaming middleware. 

2 Micro-Workflows Approach 

SWfMS allows scientists to focus on their research by automating the required experimental sce-

nario for the complex computational system. However, running one large-scale SWF with tightly-

coupled dependencies, sequential execution, and limited streaming support does not meet the event-

driven approach that is necessary for the digital twins. Also, it increases the complexity of deployment 

over different execution environments. 

We propose a novel approach to redesign the large SWF into a set of smaller loosely-coupled Mi-

cro-Workflows (MWF) that act as independent computational services, which communicate with each 

other exchanging messages by means of the streaming middleware.  

This approach allows feeding IoT low-latency data to the SWF as a data source. It also allows in-

dependent development, deployment and increases the potential of horizontal scaling. For example, 

MWFs provided low-latency response can be deployed near the IoT equipment.  

By this way, every single MWF can be reused in various parts of the main workflow and executed 

several times in parallel. Also, each MWF can be deployed in a container. 

The first step toward MWF is to redesign the original SWF into a set of SWFs linked together 

through the external data flow (see Fig. 1). 
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Fig. 1. Division of a single workflow into two Micro-Workflows 

Each MWF must own a Consumer Node (CN) to consume data from the streaming environment 

and Producer Node (PN) to publish the results into streaming middleware. The PN node inputs are the 

outputs of the preceding nodes in the same MWF. PN packages the inputs as a message to be pub-

lished into streaming middleware where being available for any consumer (see Fig. 2). 
  

 
Fig. 2. Micro-Workflows concept using streaming middleware 

3 Implementation and Testing 

3.1 Data source 

We use sensors data from DEBS
1
 2012 Grand Challenge: Manufacturing equipment. It includes a 

set of queries to process the data. The delay between two consecutive source data points is about 

10 ms.  

To test our approach, we consider the operators of the first query. Original data point includes 66 

fields. Only seven of these fields (s.bm05 till s.bm10 and the timestamp s.ts) are used in the first query. 

The first set of operators (1 till 6) detects the change of state of input fields and emits them along with 

timestamps of the state change. The second set of operators (7 till 9) correlates the change of state of 

the sensor and change of state of the valve by calculating the time difference between the occurrence 

of the state changes and emit those along with timestamps to be as the following output data (s58.dt, 

s58.ts, s69.dt, s69.ts, s710.dt, s710.ts) (see Fig. 3). Note that this sequence requires aggregating each 

message or input with preceding message or input. 

                                                           
1    http://debs.org/grand-challenges/ 
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Fig. 3. The nine operators in the first DEBS 2012 Query 

3.2 Testing the approach 

We chose Kepler
2
 as SWfMS, and Kafka

3
 as a distributed streaming platform that supports hori-

zontal scalability. When loosely coupled services interact with each other using messages, they have to 

agree on a generic message format called a schema. We use Confluent Platform
4
 as the schema regis-

try.  

To test the efficiency of data exchange and processing, we pack our MWFs in Docker container 

and deploy them together with the streaming environment on a single computing node (Intel Core i5-

2410M dual-core processor 2.3GHz with 8GB of RAM). 

To provide integration testing, we develop custom actors for Kepler: 

1- KafkaConsumer consumes messages from Kafka source, appends timestamp, aggre-

gates each message with its predecessor, and sends them to DEBS2012_Op1to6 actor. 

2- DEBS2012_Op1to6 receives a pair of messages from KafkaConsumer, applies a series 

of operations, which reflect the operators 1 till 6, appends timestamp and sends the results to 

DEBS2012_Op7to9 actor. 

3- DEBS2012_Op7to9 receives input from DEBS2012_Op1to6 actor, aggregates each 

input with its predecessor, applies a series of operations, which reflect the operators 7 till 9, and 

sends a result to KafkaProducer actor. 

4- KafkaProducer receives the input from DEBS2012_Op7to9, prepares it to be Avro 

message, appends timestamp and other parameters, and sends it to Kafka result topic. 

Fig. 4 shows a screenshot of our experimental Kepler workflow. 
 

 

Fig. 4. Screenshot of our experimental Kepler workflow 

3.3 Parameters and results 

In addition to the original result fields required by DEBS 2012, we include the following fields to 

produced messages allowing to measure the efficiency of the proposed system: 

1- mX_orgts: time, when the sensor sends the source message number X. 

2- mX_rcvts: time, when Kepler receives the source message X from Kafka source topic. 

                                                           
2  https://kepler-project.org/ 
3  https://kafka.apache.org/ 
4  https://www.confluent.io/ 
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{s05.edge=0, s05.ts=s.ts}
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If(sequence(s.bm10=0, s.bm10=1)){
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If(sequence(s05.edge=1, s08.edge=1))

{ s58.dt = s05.ts – s08.ts, 

s58.ts = s08.ts }

If(sequence(s05.edge=0, s08.edge=0))

{ s58.dt = s05.ts – s08.ts, 

s58.ts = s08.ts }
s08.edge

s08.ts
Operator 7

If( sequence(s07.edge=1, s10.edge=1))

{ s710.dt = s07.ts – s10.ts,

 s710.ts = s10.ts }

If(sequence(s07.edge=0, s10.edge=0))

{s710.dt = s07.ts – s10.ts,

 s710.ts = s10.ts }

Operator 9
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s58.dt

s58.ts

s710.dt

s710.ts

s69.dt

s69.ts
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3- K_sent_ts: time, when KafkaProducer actor sends the result message to Kafka result topic. 

To test the efficiency of data exchange and processing, we propose to measure the following 

characteristics: 

1- Av_SM (average interval between source messages): the average time delay between two 

consecutive source data messages sent by the sensor to Kafka throughout the test. 

2- Av_RM (average interval between result messages): the average time interval between two 

consecutive result messages produced by our MWF throughout the test. 

3- Av_TAT (average turnaround time): the average time interval required to produce a single 

result message by our MWF. Note that the interval starts from the time of receiving the third 

required source message (m3_rcvts) from Kafka source and ends at the time of sending the 

result message (K_sent_ts) to Kafka. 

Results of our experiments are provided in Table 1. During one-hour test, our system processed 

more than 472 thousand messages with the average turnaround time about 1.38 ms. 

Table 1. Testing results 

Test time 1 hour 

Number of messages 472279 

Av_SM (millisecond) 7.62 

Av_RM (millisecond) 7.62 

Av_TAT (millisecond) 1.38 

4 Conclusion 

Scientific workflow management systems allow to design, execute and manage execution of 

workflows for various application scenarios. However, they face significant challenges such as tightly-

coupled dependencies of jobs, sequential execution, and lack of data streaming support. The challeng-

es become greater when the target system, such as a Digital Twin, demands event-driven processing. 

In this paper, we proposed a new architecture of Micro-Workflows that supports processing of stream-

ing events from various sources (such as sensors) inside computational workflows. The implementa-

tion and testing of this architecture using Kepler SWfMS and Kafka streaming processing solution 

show that the proposed architecture provides a capability toward meeting the Digital Twins develop-

ment processes with a reasonable overhead.  
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