
An Efficient Parallel Algorithm for Numerical
Solution of Low Dimension Dynamics Problems

Stepan Orlov1, Alexey Kuzin� and Nikolay Shabrov2

Computer Technologies in Engineering dept.
Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russian Federation
1 majorsteve@mail.ru �kuzin aleksei@mail.ru 2 shabrov@rwwws.ru

Abstract. Present work is focused on speeding up computer simulations
of continuously variable transmission (CVT) dynamics. A simulation is
constituted by an initial value problem for ordinary differential equations
(ODEs) with highly nonlinear right hand side. Despite low dimension,
simulations take considerable CPU time due to internal stiffness of the
ODEs, which leads to a large number of integration steps when a con-
ventional numerical method is used. One way to speed up simulations is
to parallelize the evaluation of ODE right hand side using the OpenMP
technology. The other way is to apply a numerical method more suitable
for stiff systems. The paper presents current results obtained by employ-
ing a combination of both approaches. Difficulties on the way towards
good scalability are pointed out.

Keywords: Continuously Variable Transmission· OpenMP· Numerical
Integration· Parallel Algorithm

1 CVT Model Overview

The paper considers simulations of the dynamics of continuously variable trans-
mission (CVT) consisting of two shafts (driving and driven ones), each bearing
two pulleys, and the chain consisting of rocker pins and plates (Figure 1). Pul-
leys have toroidal surfaces contacting with the convexo-convex end surfaces of
pins. The torque is transmitted from the driving shaft to the driven one due to
friction forces at pin-pulley contact points. One pulley at each shaft can move
along the shaft axis, which allows to change CVT gear ratio. Rocker pins of the
chain consist of two halves rolling over each other. A link of the chain is formed
by 12–16 plates housing two pin halves.

Here we consider the mathematical model of CVT dynamics proposed in [1].
The model takes many details into account, which are the discrete chain struc-
ture; the extension and bending deformations of pins; the extension, bending,
and torsion of plates; the elasticity of shafts, supports, and pulley-to-shaft at-
tachments. The motion of the model is described by initial value problem for the
system of ordinary differential equations (ODEs), which is obtained by means
of Lagrangian mechanics:

Aq̈ = F (q, q̇, t), (1)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

50

2 S. Orlov, A. Kuzin, N. Shabrov

(b) Piece of CVT chain

(c) Single chain link
(a) CVT model view

Fig. 1. General view of CVT model; the chain; a single chain link

where q is the vector of generalized coordinates, A — positive-definite matrix
of inertia, F — essentially non-linear function of q, q̇ and t. The system can be
transformed to normal form with obvious substitution: u ≡ q, v ≡ q̇:

u̇ = v, Av̇ = F (u, v, t). (2)

Importantly, many contact interactions in the CVT model involve friction
forces. The friction law used is close to the Coulomb’s one, but is regularized:
the friction coefficient f is constant at relative speeds greater than the saturation
speed v0, and depends on speed linearly at speeds less than v0. Therefore, the
friction law is piecewise linear. The non-smoothness of the friction law may affect
the behavior of numerical methods investigated, that’s why we also consider
an alternative system in which the friction law is smoothed using a parabola
connecting straight parts (Figure 2).

original nonsmooth friction law smoothed friction law, ε = 1
2

Fig. 2. Friction laws used in numerical experiments

Each step of numerical integration of the system (1) includes the evaluation of
the right hand side F based on the current state vector q, q̇, and the evaluation
of accelerations by solving the system of linear algebraic equations Aq̈ = F .
These steps are repeated 4 times per integration step when the RK4 integration

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

51

An Efficient Parallel Algorithm for Numerical Solution 3

method is used. Once the integration step is completed, the state vector at time
instant t + h is known. Then a phase transition procedure is run to detect pin
— pulley contact state transition within the step. If transitions are found, the
step is truncated, and the state is interpolated at the time of first transition.

Fig. 3. CPU time consumption in CVT simulation. Sequential code

Parallelism can be introduced into the procedure in a natural way by evalu-
ating the ODE right hand side in parallel. Presently the following parts of the
integration step are parallelized: chain forces calculation, which takes almost all
of the right hand side evaluation time, the reverse pass of Cholesky procedure of
accelerations calculation, and the phase transition. Time costs of these separate
operations in percents to overall simulation time obtained in sequential mode are
shown in Figure 3. The largest part of simulation time is spent on chain forces
calculation, which is both the forces between pins and plates and the contact
forces between pin tips and pulleys. Altogether with Cholesky reverse pass and
phase transition it takes almost 95% of overall time. Therefore, the program
contains about 5% of sequential code.

Fig. 4. Pin halves affected due to pin force
application

Fig. 5. Pin halves affected due to link force
application

An application of parallel technologies for the model of bearings, which is
an example of periodic mechanical structure is presented in the work [2]. Also
there are a lot of works dedicated to the parallel-in-time approach [3–5], which

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

52

4 S. Orlov, A. Kuzin, N. Shabrov

is to be perspective for the problems of small dimension. Therefore the approach
can be considered as a field for future work for the problem considered while
the present article shows the boundaries of speedup achieved using fine grained
parallelism across the single integration step.

The chain forces that reside in the right hand side of (1) are generalized
forces corresponding to the generalized coordinates of the pins. These forces
emerge from interactions of two kinds. First of them are interactions between pin
halves, and between pin halves and link plates; other forces, further referred to
as contact forces, are result of contact between pin tips and pulleys. The forces
of pins and links interactions also can be split into two groups: so called pin
forces and link forces. Pin forces arise between halves of the same pin, these are,
for example, contact interactions between pin halves. These interactions, when
applied, give a contribution into generalized forces of both contacted halves and
the pin halves of neighboring pins that belong to the same link with contacted
ones (see Figure 4). Link forces arise from interactions between pins that belong
to the same link therefore these are outer halves of adjoining pins (see Figure 5).
These are, for example, the forces acting due to the link plates deformation.
These interactions, when applied, give contribution to generalized forces of pin
halves of the link only (Figure 5).

Due to this specificity of interactions structure, the model of chain forces
calculation chosen in the application seems to be natural. Let us consider chain
consisting of N pins and N links. It can be split to M continuous parts by pin
numbers ni, i ∈ [0;M], (n0 = nM). These pins and links are distributed between
M threads so each i-th thread takes [ni, ni+1) links and [ni + 1, ni+1) pins.
Therefore M pins stay unassigned. Each thread calculates generalized forces in
assigned pins independently; there is no synchronization needed. The calcula-
tion ends with a barrier, and then each i-th thread calculates pin forces in the
unassigned pin ni+1. Figure 6 demonstrates this procedure for the case of M = 2
and N = 8. The threads 0 and 1 take pins 1−3 and 5−7 respectively. Pin forces
for unassigned pins 0 and 4 are evaluated after the barrier by threads 1 and 0
respectively. It is worth noticing that a portion of generalized forces is applied
to pins 0 and 4 before the barrier. The threads add these generalized forces in
parallel to the same pins but into the different halves.

Fig. 6. An example of pins distribution between threads

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

53

An Efficient Parallel Algorithm for Numerical Solution 5

Contact forces should be computed in a different way. These are link forces
according to the schema of assignment, but they cannot be included into the
procedure described because of calculation imbalance they produce. Therefore,
pin halves in contact with pulleys are distributed uniformly between threads.

2 Results of Parallelization

Here the results of dynamics simulation of CVT with chain containing 84 pins
are described. The simulations are performed on two nodes of “Polytechnic RSK
Tornado” of Supercomputer Center Polytechnic of SPbPU, the parameters of
the nodes are listed in Table 1.

Table 1. Parameters of computer used in simulations

Cores per socket 14
NUMA nodes 2
CPUs Intel Xeon E5-2697 v3 2.60GHz
Linux CentOS Linux release 7.0.1406 (Core)
C++ compiler Intel 2017.5.239

The CPUs affinity has been set up, so when M ≤ 14 only one NUMA node is
in use and when M > 14 the additional cores have been requested on the second
node (M is the number of threads).

Fig. 7. Simulation speedup when ac-
celeration calculation and phase tran-
sition are evaluated in parallel.

Fig. 8. Simulation speedup when ac-
celeration calculation and phase tran-
sition are not evaluated in parallel.

The speedup of the whole simulation as a function of thread count is pre-
sented in Figure 7. Also the chart contains ideal curve that corresponds to Am-
dahl’s law with the fraction of serial work equal to 5%, which is the case presented
in Figure 3. The speedup is far from ideal mostly because of the bad scalabil-
ity of the calculation of accelerations and phase transitions. One can see that

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

54

6 S. Orlov, A. Kuzin, N. Shabrov

analogous simulation with these parts evaluated sequentially has better corre-
spondence to the ideal curve (Figure 8), besides it loses in absolute speedup to
the first simulation. The fraction of sequential code in this case, according to the
Figure 3, is about 14%, and Amdahl’s curve lays significantly lower.

Fig. 9. Chain forces calculation speedup

The dependency of chain forces evaluation speedup on thread count is pre-
sented in Figure 9. The chart contains experimental curve, ideal speedup (ideal),
and ideal speedup taking into account thread non-ideal balancing (ideal unbal-
anced). The last curve is defined as follows. According to work distribution
schema described above, each i-th thread takes contiguous part of the chain
consisting of Ni pins. In the ideal case all values Ni are equal to each other for
i ∈ [0,M), but it obviously takes place only when the total pin count N = 84
is divisible by M . Otherwise Ni can differ from each other by one. For example,
when M = 11, 7 threads process 8 pins each and 4 threads — only 7 pins each. In
this case the overall time is determined by the “slowest” thread that, obviously,
processes 8 pins (it is supposed that all pins are processed in the same time and
this takes place in the simulation). The curve ideal unbalanced is calculated as
a function of M in the following way:

f(M) =
N

Ni,max(M)
, (3)

where Ni,max(M) = maxi∈[0,M) (Ni) — the largest pin count per thread for
the case of M threads. This is a piecewise line with horizontal segments. The
segments consist of points where, despite the growth of thread count, Ni,max

remains the same. For example, when M = 14 all threads receive the same count
of pins Ni = 6 and when M = 15, 9 threads receive 6 pins each and 6 threads
— 5 pins each, so there is no speedup in this transition. One can notice that the
bends of experimental curve repeat those ones of ideal unbalanced. Therefore,
the bends of experimental curve take place because of the irregularity of Ni,max

decrements as the thread count grows. The jumps of speedup take place when

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

55

An Efficient Parallel Algorithm for Numerical Solution 7

N is divisible by M : M = 12, 14, 21, 28. These are the cases of ideal balancing
when all threads take the same count of pins. Analogous behavior takes place
when M = 17. This is an “almost ideally” balanced case: 16 threads receive 5
pins each and one — 4 pins each.

Fig. 10. Chain forces calculation time per thread

One can see that the experimental curve resides significantly lower than ideal
ones, which can be explained by two factors. Firstly, there is an imbalance of
loading between threads while contact forces are calculated; secondly, there is
significant overhead time at parallel sections opening/closing. Both effects can
be seen in Figure 10. This diagram shows overall execution time of parallel code
for each thread that evaluates chain forces for M = 28. Each bar represents
overall time of one thread and is split into the stages. The stages enter and exit
represent opening and closing of OpenMP section, contact forces is the stage of
contact forces calculation, chain forces is the stage of pin/link forces calculation
before the barrier, barrier is the stage that represents OpenMP barrier neccesary
before the rest M pin forces evaluation. And finally chain forces final is the stage
of pin forces calculation of the rest M boundary pins.

One can notice that times of contact forces evaluation differ from one thread
to another, while the times of pin/link forces evaluation are almost the same.
This imbalance is noticeable, but one can see that more significant time is spent
in sections enter, exit and barrier. This overhead cannot be explained only by
load imbalance. Firstly, hotspot detection with Intel VTune Amplifier shows
significant overhead time at OpenMP section opening/closing. Secondly, we have
performed the same simulation with the application built with GCC compiler
(GCC 5.4.0 and 7.2.0 have been used with the same results). This simulation has
demonstrated much longer time (almost 1.5 times longer) of execution of sections
enter, exit, and barrier, while durations of other sections have no significant
changes. This fact also proves indirectly that the durations of sections enter,
exit and barrier are determined in general by time spent in OpenMP code and
not by unbalance of thread load.

Large overhead time is expectable with the schema of parallelism selected,
when OpenMP sections are short and start and exit at each integration step.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

56

8 S. Orlov, A. Kuzin, N. Shabrov

Probably it is worth defining one common OpenMP section that would contain
the whole ODE time integration procedure, but this is not straightforward and
requires significant reorganization of integration scheme and can be a challenge
for the future work.

3 Investigation of Numerical Methods

3.1 Previous Work

For a long time production versions of CVT simulation software have been using
the classical explicit Runge–Kutta fourth order scheme (RK4) [6] to solve the ini-
tial value problem for equations (2). Explicit schemes impose limitations on step
size h due to the stability requirement: the value hλ, where λ is an eigenvalue of
ODE right hand side Jacobian matrix, must belong to the stability region of the
method. That is the reason for long simulation times in the case of CVT dynam-
ics equations. Previous work [7] presents the results of attempts to apply several
other numerical integration methods, including explicit schemes (classical DO-
PRI45, DOPRI56, DOPRI78 methods), Gragg–Bulirsch–Stoer method (GBS),
and Richardson’s extrapolation applied to explicit Euler method; semi-implicit
W-methods of Rosenbrock [8] type (SW24 [9] and Richardson’s extrapolation
applied to a W-method of first order); the trapezoidal rule implicit method
(TRPZ). Among those methods, only the trapezoidal rule method allows to ob-
tain sufficiently accurate numerical solution at steps much larger than the step
chosen for RK4 (in the numerical example, step size for RK4 needs to be at most
5 · 10−8 second, while the trapezoidal rule has allowed us to obtain numerical
solution of the same accuracy at step 2 · 10−6 second). Although the stability of
implicit methods do not impose limitation on step size, such a limitation appears
nevertheless: the nonlinear equation system that needs to be solved at each step
has to be solved using a Newton-like iterative method; in our case, iterations
only converge when the step size is not too large.

The trapezoidal rule has proved to be able to provide accurate numerical
solution at time steps 40 times greater than steps we have to use with the RK4
scheme. However, the practical usefulness of the method is doubtful. In our nu-
merical tests we found that the Newton’s iterations converge at 5–10 steps only
when the Jacobian matrix is fully recomputed at each iteration. Attempts to
apply Broyden updates would break the sparsity of the Jacobian; attempts to
limit Broyden’s updates to current Jacobian sparsity stencil seem to work, but
still recomputing the Jacobian may be needed more than once per time step,
and the number of iterations increases up to tens. Jacobian updates proposed
in [10] didn’t work at all in our tests with CVT equations, although they worked
well for other much simpler equation examples. Finally, not updating the Jaco-
bian at all during the time step may increase the number of Newton’s iterations
up to hundreds, and the iterations may even fail to converge at all. Therefore,
one practical approach to speedup simulations using the Newton’s method is to
compute the Jacobian matrix in parallel, probably employing the approach pre-
sented in [11] in order to reduce the number of ODE right hand side evaluations,

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

57

An Efficient Parallel Algorithm for Numerical Solution 9

and to use a parallel LU solver for linear systems at Newton’s iterations. This
approach hasn’t been tried yet.

3.2 Eigenvalues of ODE Right Hand Side Jacobian Matrix

We continued our search for a numerical method that is more suitable for the
numerical integration of CVT dynamics equations. To make the search more
purposeful, we have investigated eigenvalues of ODE right hand side Jacobian
matrix. Namely, the full eigenvalue problem was numerically solved at some
typical state in a stationary regime of CVT operation. The eigenvalues found
split into two groups: firstly, there are complex eigenvalues corresponding to
damped oscillations; secondly, there are real negative eigenvalues corresponding
to non-oscillatory dissipation processes. Absolute values of eigenvalue imaginary
parts have maximum at approx. 106 s−1 , while absolute values of real parts —
at approx. 108 s−1. Figure 11 shows the computed eigenvalues of the Jacobian
matrix in the linear scale (left) and the logarithmic scale (right). Notice that in
the latter case, the scale is logarithmic everywhere except the vicinity of zero —
the region limited by dashed lines; in that region, the scale is linear.

Reλ

Imλ

Reλ

Imλ

linear scale logarithmic scale

original nonsmooth friction law smoothed friction law

Fig. 11. Eigenvalues of ODE right hand side Jacobian matrix

Further we proved that the largest negative eigenvalues are caused by friction
forces acting between pin halves, and the operating points in the friction law are
at the linear part (v < v0). The idea of the proof is to change (e.g., increase 10
times) the saturation speed v0 in the friction law, then recompute the Jacobian
matrix and find its eigenvalues. The results of evaluation are shown in Figure 12.
In case (a), we increased the saturation speed v0 10 times for the friction law
between pin halves; in case (b), we also increased it 10 times for friction between
pins and plates; in case (c), in addition, we increased it 10 times for friction
between pins and pulleys.

Therefore, largest negative eigenvalues correspond to the friction between pin
halves. This fact allows us to conclude that such eigenvalues are proportional to
the tension force in the most loaded straight part of the chain, and, consequently,
vary from one CVT operation regime to another.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

58

10 S. Orlov, A. Kuzin, N. Shabrov

Reλ

Imλ

Reλ

Imλ

Reλ

Imλ

(a) (b) (c)

original nonsmooth friction law smoothed friction law

Fig. 12. Eigenvalues of ODE right hand side Jacobian matrix for modified friction law

The behavior and suitability of a numerical integration method strongly de-
pend on the eigenvalues of the Jacobian matrix of the ODE right hand side.
The product of a characteristic time span length H and the eigenvalue λ∗ with
maximum absolute value are of particular interest. The value H is the time be-
tween two neighboring states that we wish to have in the numerical solution,
that is, the “output step”. The product H|λ∗| can be used to estimate how
much steps a numerical method will take to reach time point t+H starting from
time point t. We can state that in our case the output step H is in the range
10−5–10−4 second, depending on further processing of numerical solution.

The results of the Jacobian matrix investigation indicate that the ODE sys-
tem we are dealing with is mildly stiff, because the product H|λ∗| is in the range
103–104.

3.3 Applying Stabilized Explicit Method

Having investigated the stiffness properties of the ODE system, we decided to
consider so called stabilized explicit, or Chebyshev–Runge–Kutta [12, ch. IV.2],
numerical integration methods. Among those we picked the one called DUMKA3
[13]. The choice of that particular method was based on public availability of
solver implementation code in C programming language.

A stabilized explicit scheme has stability region, defined by the condition
|Rs(hλ)| ≤ 1, extended into real negative direction of complex plane hλ. The
function Rs is a polynomial of degree s, called the stability polynomial.

The DUMKA3 solver actually implements a family of s-stage Runge–Kutta
schemes, each of which realizes stability polynomial of degree s varying from 3
up to 324. The solver implements automatic step size control, based on step local
error estimation, and polynomial degree control, based on the estimation of ODE
right hand side Jacobian matrix spectral radius. Preliminary tests have shown
that solver performance with both control options enabled is far from optimal
in our system. Besides, a numerical estimation of Jacobian spectral radius do
not work well due to discontinuities of the ODE right hand side in the case of
nonsmooth friction law, resulting sometimes in too large values. We disabled
both control options. The motivation was to obtain best performance at fixed
step for each fixed polynomial degree. Giving each polynomial an index k from 0

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

59

An Efficient Parallel Algorithm for Numerical Solution 11

to 13 (DUMKA3 implements 14 polynomials), we denote corresponding schemes
by suffixes -Pk. In particular, we tested degrees s = 21 (k = 4), s = 27 (k = 5),
s = 36 (k = 6), s = 48 (k = 7), s = 63 (k = 8), s = 81 (k = 9). Polynomials
k ≤ 4 and k ≥ 9 have shown poor performance: in the first case the stability
region is too small in the real negative direction, and in the second case it is too
small in the imaginary direction.

1e-8 1e-7 1e-6 1e-5

1e-9

1e-8

1e-7

1e-6
1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1
1e+2

e
rr
o
r

step

1e-8 1e-7 1e-6 1e-5

1e-9

1e-8
1e-7

1e-6

1e-5

1e-4
1e-3

1e-2

1e-1

1e+0
1e+1

1e+2

e
rr
o
r

step

original nonsmooth friction law smoothed friction law

DUMKA3-P4 DUMKA3-P5 DUMKA3-P6
DUMKA3-P7 DUMKA3-P8 DUMKA3-P9
RK4 TRPZ

Fig. 13. Dependency of step local error norm on step size

Figure 13 shows the dependency of step local error norm on the step size.
DUMKA3 results are compared against RK4 and the trapezoidal rule; the latter
one is known [7] to give sufficiently accurate solution at h = 2 · 10−6 s. It can be
shown that the slope for each curve at steps below 10−6 corresponds to the order
of the scheme (3 for DUMKA3, 4 for RK4, and 2 for TRPZ). Notice also that
at steps above 10−6 local error for all DUMKA schemes rises sharply at some
point; additional error jumps can be see at step 10−6 for nonsmooth friction law.
At large step sizes, local error for DUMKA schemes is approximately the same
as for the trapezoidal rule, in the case of smoothed friction law; for nonsmooth
fricion law, the trapezoidal rule gives smaller error.

Figure 14 shows the sample curve (pin axial force when it enters the driv-
ing pulley set) computed numerically. It follows from the figure that schemes
DUMKA3-P5 – DUMKA3-P8 give sufficiently accurate solution at step h =
2 · 10−6, and at step h = 4 · 10−6 only the scheme DUMKA3-P8 does so.

Comparing simulation times, we can conclude that the DUMKA3 solver can
perform simulations several times faster than RK4, which is summarized in ta-
ble 2. Notice that the value nRHS in the table is the total number of ODE
right hand side evaluation in the test simulation (the same as used to obtain the
sample curve).

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

60

12 S. Orlov, A. Kuzin, N. Shabrov

0.000 0.001 0.002 0.003 0.004 0.005
0

100

200

300

400

500

time

p
in

-a
x
ia

l-
fo

rc
e

0.000 0.001 0.002 0.003 0.004 0.005
0

100

200

300

400

500

600

p
in
-a
x
ia
l-
fo
rc
e

time

h = 2 · 10−6 s h = 4 · 10−6 s

DUMKA3-P4 DUMKA3-P5 DUMKA3-P6
DUMKA3-P7 DUMKA3-P8 DUMKA3-P9
REFERENCE

Fig. 14. Sample curve obtained with different polynomial degrees

Table 2. Performance of DUMKA3 schemes compared against RK4

scheme h, s nRHS speedup against RK4

RK4 5 · 10−8 400824 1
DUMKA-P5 2 · 10−6 75817 5.9
DUMKA-P7 3 · 10−6 95425 4.7
DUMKA-P8 4 · 10−6 104821 4.4

4 Conclusions and Future Work

The paper describes our activities in speeding up of simulation of nonlinear
problem of dynamics modeling of CVT.

The procedure of ODEs integration over time can be parallelized in natural
way when the right hand side is being calculated in parallel at each step. It can
be done in this problem because of regular structure of the chain. Therefore the
chain forces calculation can be distributed between threads by dividing the chain
into continuous segments. This calculation procedure requires only one explicit
barrier.

Another stages that can be calculated in parallel are accelerations evaluation
and phase transition.

This approach leads to the problem of rather high overhead because of small
parallel sections lengths. It can be overcome in the approach with one common
parallel section that spans the whole integration procedure. We consider it as a
perspective for future work.

The attempt to use stabilized explicit Runge–Kutta solver, DUMKA3, has
proven to be successful in terms of performance. However, original polynomial
order control implemented in the solver doesn’t work: it tends to increase poly-
nomial order, but in that case Jacobian eigenvalues with maximum imaginary
parts fall outside the stability region, since it becomes a bit narrower in the imag-

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

61

An Efficient Parallel Algorithm for Numerical Solution 13

inary direction. This motivates us to consider other stabilized explicit solvers,
first of all RKC and SERK2 [14], and probably others, constructed according to
the approach presented in [15], because there is a way to construct a method
with stability region that best fits the spectrum of ODE right hand side Jaco-
bian. Among all numerical integration methods tested so far for our problem,
DUMKA3 has shown the best performance, for the case of sequential code. In the
same time, estimations show that the trapezoidal rule method considered in [7]
has the potential to gain the speedup of about 100 due to the parallelization of
Jacobian calculation, which, however, does not reduce computational costs be-
cause the number of CPU cores required for that is about 600. The combination
of the ODE right hand side parallelization and the DUMKA3 solver promises to
achieve speedups of about 30.

References

1. Shabrov, N., Ispolov, Yu., Orlov, S.: Simulations of continuously variable transmis-
sion dynamics. ZAMM 94 (11), pp. 917–922. WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim (2014).

2. Nordling, P., Fritzson, P.: Solving ordinary differential equations on parallel
computers – applied to dynamic rolling bearings simulation. In: Dongarra J.,
Waśniewski J. (eds) Parallel Scientific Computing. PARA 1994. Lecture Notes
in Computer Science, vol 879. Springer, Berlin, Heidelberg, (1994).

3. Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-
advection system. Computers & Fluids, 59, pp. 72–83 (2012).

4. Jun Liu, Yao-Lin Jiang: A parareal waveform relaxation algorithm for semi-linear
parabolic partial differential equations. Journal of Computational and Applied
Mathematics, 236 (17), pp 4245–4263 (2012).

5. Kreienbuehl, A., Benedusi, B., Ruprecht, D., Krause, R.: Time parallel gravita-
tional collapse simulation. Communications in Applied Mathematics and Compu-
tational Science. 12 (1), pp. 109–128, (2015).

6. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I
(2Nd Revised. Ed.): Nonstiff Problems. Springer-Verlag New York, Inc. (1993).

7. Orlov, S., Kuzin, A., Shabrov, N.: Two approaches to speeding up dynamics simu-
lation for a low dimension mechanical system. Communications in Computer and
Information Science, 793, pp. 95–107 (2017).

8. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of
differential equations. Comput J 5, pp. 329–330 (1963).

9. Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear
equations in the numerical solution of stiff differential equations. Math. Comp., 33
pp. 521–534 (1979).

10. Hart, W.E., Soesianto, F.: On the solution of highly structured nonlinear equations.
Journal of Computational and Applied Mathematics 40 (3), pp. 285–296 (1992).

11. Ypma, T.J.: Efficient estimation of sparse Jacobian matrices by differences. Journal
of Computational and Applied Mathematics 18 (1), 17–28 (1987).

12. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Springer-Verlag Berlin Heidelberg (1996).

13. Medovikov, A.A.: High order explicit methods for parabolic equations. BIT Nu-
merical Mathematics 38 (2), pp. 372–390, (1998).

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

62

14 S. Orlov, A. Kuzin, N. Shabrov

14. Mart́ın-Vaquero, J., Janssen, B.: Second-order stabilized explicit Runge–Kutta
methods for stiff problems. Computer Physics Communications 180 (10), 1802–
1810 (2009).

15. Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge–Kutta methods with
application to hyperbolic–parabolic equations. Numerische Mathematik 106 (2),
pp. 303–334 (2007).

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

63

