
The multi-level adaptive approach for efficient
execution of multi-scale distributed applications

with dynamic workload

Denis Nasonov1, Nikolay Butakov1, Michael Melnik1, Alexandr Visheratin1,
Alexey Linev2, Pavel Shvets3, Sergey Sobolev4, and Ksenia Mukhina1

1 ITMO University, Saint-Petersburg, Russia
2 Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia

3 Research Computing Center of Moscow State University, Moscow, Russia
4 Moscow State University, Moscow, Russia

denis.nasonov@gmail.com alipoov.nb@gmail.com mihail.melnik.ifmo@gmail.com

alin@unn.ru shvets.pavel.srcc@gmail.com sergeys@parallel.ru

mukhinaks@gmail.com

Abstract. Today advanced research is based on complex simulations
which require a lot of computational resources that usually are organized
in a very complicated way from technical part of the view. It means that
a scientist from physics, biology or even sociology should struggle with all
technical issues on the way of building distributed multi-scale application
supported by a stack of specific technologies on high-performance clus-
ters. As the result, created applications have partly implemented logic
and are extremely inefficient in execution. In this paper, we present an
approach which takes away the user from the necessity to care about an
efficient resolving of imbalance of computations being performed in differ-
ent processes and on different scales of his application. The efficient bal-
ance of internal workload in distributed and multi-scale applications may
be achieved by introducing: a special multi-level model; a contract (or
domain-specific language) to formulate the application in terms of this
model; and a scheduler which operates on top of that model. The multi-
level model consists of computing routines, computational resources and
executed processes, determines a mapping between them and serves as a
mean to evaluate the resulting performance of the whole application and
its individual parts. The contract corresponds to unification interface of
application integration in the proposed framework while the scheduling
algorithm optimizes the execution process taking into consideration the
main computational environment aspects.

Keywords: multi-scale applications · distributed computing · HPC ·
optimization · multi-agent modeling · MPI.

1 Introduction

The growth in the performance of computing systems (CS) for scientific comput-
ing and the increasing complexity of computer simulation models is one of the

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

600



2 D. Nasonov et al.

leading trends in the development of information technologies. Currently, the
implementation of the exascale computing by 2020 is being discussed. On the
other hand, this performance increase is mainly associated with the complexity
of the CS architecture. Efficient use of this type of integrated CS in modelling
is a complex engineering task. In addition to that, following challenges emerge:

1. the need to use multi-scale and multi-physical models, various modelling
methods (grid and drains) in the solution of one applied problem;

2. the use of specialized computation resources (for example, graphics proces-
sors);

3. the problem of balanced spatial decomposition due to the complexity of the
geometry of the domain of definition;

4. dynamic change in the complexity of different parts of the problem: with
spatial decomposition due to the change in the geometry of the system or
due to the emergence of areas of high computational complexity (for example,
clustering of agents in multi-agent systems, slow convergence regions for grid
methods;

5. the development of cloud computing technologies, in which the CS architec-
ture is hidden from the user, and the need to meet their requirements.

This leads to a significant slowdown in the development of new simulation mod-
els, the use of obsolete technologies for parallel problem solving, the low effi-
ciency of resource allocation and, ultimately, the inability to master the exascale
computing system. In these circumstances, the traditional approach in which
the responsibility for the parallel performance of software implementation of
the model is assigned to the developer of the model is not efficient. Within
the framework of this project, the approach to the separation of the develop-
ment process of a simulation model from solving the problem of the efficient use
of computing resources is given, which should be solved automatically. At the
same time, efficient allocation of resources is impossible without knowledge of
the internal logic of models; therefore, a tool should be proposed for its formal
description in the resource allocation system and for providing the system with
access to the task decomposition; dynamic allocation of resources should be en-
sured. The development of this approach for automatic resource allocation will
significantly reduce the complexity of implementing computationally complex
simulation models, allowing the developer to concentrate entirely on modelling
methods, increase the efficiency of using computing resources. The authors of
the proposal are sure that without the solution of these problems and the de-
velopment of the proposed approach, the CS’s exascale performance will not be
accessible from a practical point of view. Additionally, simplifying the imple-
mentation of models stimulates interest in more complex modelling methods,
for example, using multiscale approaches. In this paper, we present an approach
for efficient execution of multi-scale distributed applications with the dynamic
overflowing workload. This approach includes dynamic (variable) graph model
for allocating the structure of a multiscale distributed application as well as the
unified framework for constructing this graph model and applying the algorithm
of efficient management of executed tasks on dedicated computational resources.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

601



Title Suppressed Due to Excessive Length 3

2 Related works

Since multiscale applications have a graph structure, the task of their plan-
ning is generally considered as the task of planning composite applications. To
date, there is a wide variety of algorithms and methods for solving this prob-
lem. In [1], the authors proposed a coevolutionary genetic algorithm (CGA) for
planning scientific composite applications that have execution deadlines. Ex-
perimental studies have shown the high efficiency of the developed method for
optimizing the value of the resources used. However, this algorithm does not
allow to optimize further the execution time, which reduces the possibility of
its use. The heuristic IPEFT algorithm was proposed in [2]. The results of the
experiments showed a fairly low execution time for small applications, as well as
better results compared to the predecessors - HEFT and PEFT. Despite this,
the authors’ experience with heuristic algorithms [3]-[4] shows that their ability
to find optimal solutions is very limited. An additional direction of research in
the field of planning composite applications is the study of the ways to ensure
energy efficiency of tasks. So in [5], the authors presented the heuristic EONS
algorithm for planning composite computations taking into account the energy
consumption of computing resources. But, since in most modern projects en-
ergy efficiency is not a key factor for optimization, it must be considered in
conjunction with the implementation time and the cost of using resources. In
[6] the methods of planning composite applications in the conditions of time
constraints and the budget for the computing resources rent in the cloud envi-
ronment are studied. The ideas of the planning algorithms proposed in the article
are based on concrete, well-structured templates of the composite application.
This approach is not always efficient because there are strict requirements for the
structure of the composite application, which in general will rarely be met.There
are works devoted to the development of systems for organizing the implemen-
tation and design of composite applications. For example, [7] presents a system
for modelling designing and integrating composite applications into a comput-
ing environment. Such systems are aimed at simplifying the process of creating
and executing applications. [8] presents a platform for organizing the planning
process based on the flow of tasks and the dependencies between them. The
main idea of the architecture of the platform is to present all the computational
tasks in one composite application, which expands due to the tasks entering the
platform. In [9], a detailed analysis of the types of multiscale applications, as
well as possible ways of their implementation in a distributed environment, is
given. The authors identified three types of applications: related, scalable and
prioritized applications. For each type, application examples were selected and
manual optimization was performed. As shown by the results of experimental
studies, the use of knowledge about the nature of applications can significantly
accelerate their implementation. However, the authors did not offer automated
optimization paths, which is a critical drawback of the work. The cloud platform
for analyzing and visualizing multiscale data is presented in [10]. The platform
is based on the integration of tools and services for data analysis with services
for data storage and composite applications execution. The main objectives of

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

602



4 D. Nasonov et al.

the platform development were to provide a convenient tool for modelling the
processing of multiscale data, their implementation with automatic scaling of
the computing environment and visualization of the analysis results (for ex-
ample, climate data). In [11], the authors analyze the capabilities of existing
composite application management platforms for efficient work with extreme-
scale composite applications. Under extreme-scale composite applications, the
authors mean applications that require advanced high-performance computing
technologies for highly accurate predictive models based on the analysis of large
volumes of multiscale data. The authors of [12] presented a modified version of
the framework for distributed execution of multi-scale MUSCLE-HPC applica-
tions. Its main advantage over the previous version of MUSCLE-2 is the more
efficient distribution of tasks in high-performance clusters by analyzing the re-
lationships between applications and the location of closely related tasks within
a single cluster. Despite the presented advantages, in MUSCLE-HPC, as well as
in previous versions, there are no mechanisms for optimizing the applications
themselves during the execution.

3 Multilevel approach

This section describes basic parts of architecture of the proposed approach taking
into consideration problem statement aspects.

3.1 Problem statement

As mentioned before, the main problem lays between complexity of model dis-
tributed blocks interconnection and infrastructure appropriate mapping. Con-
sider that application has execution environment that is organized as a com-
putational grid G < V,E >, where V = {vj} corresponds to vertexes and
E = {ej1,j2} represents edges. Upon the environment, grid computational ele-
ments W = {wl} form actual load of model logic. This elements may move in the
environment from one nodes to another each computational iteration. V nodes
are divided between computational resources R = {rm}. Let consider S = {wj

l }
as current distribution of actual load and define reorganization function

f(S1, S2) = Σ
cwj

l

ej,j ′
· δjj ′

δjj ′ =

{
1, if j and j ′ are on different resources

0, otherwise;
,∀j, j ′ = 1, ..., Jm,

, where cwj
l

- is amount of metadata needed to transfer load from vj to vj ′ ; while

ej1,j2 corresponds to network channel throughput.

T (S) = maxm(ΣJm
j

w

pm
+ΣjΣj ′

wj

ej,j ′
· τ jj ′)

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

603



Title Suppressed Due to Excessive Length 5

τ jj ′ =

{
1, if there is actual load moving from j to j ′

0, otherwise;
,∀j, j ′ = 1, ..., Jm,

Having these equations we can define the change environment criteria for the
optimization algorithm:

T (Sprev) · θ > f(Sprev, Snew) + T (Snew) · θ.

Here θ is statistically depending value that corresponds to the rate of chang-
ing of actual load through the elements of the environment.

3.2 The approach

Our approach of efficient execution of distributed applications consists of 3 main
parts: a three-layer model of performance; a scheduling algorithm that uses the
model to estimate performance of an application in different configurations; the
partition-based model of computations that allows user to provide its own rou-
tines for computations. The basic concept is presented in Figure 1.

Fig. 1. Three-tier design of architecture

To solve the problem of scaling using the proposed model we developed a
genetic-based algorithm to balance the workload on individual processes and thus
improve overall performance. The objective of the algorithm is to reconfigure
the computing resources based on the current load profiles generated by the
computing processes on the resources. Concerning the task of modelling the
behaviour of the population in specified urbanized areas (see City-Simulator
application in Case Study section), the developed algorithm adaptively manages

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

604



6 D. Nasonov et al.

the allocation of modelling areas to physical computing processes based on the
current specific load of these processes.

At the core of the model, there are few logical entities - ”process”, ”agent”, as
well as the matrix of process contiguity with each other. Based on the fact that
individual processes are responsible for modelling individual geographic areas,
and moving agents across the city imply moving only between adjacent areas
(in the simplest case), the adjacency matrix defines the subsequent area on the
agent path at each time point. In this case, if modelling processes on nodes
of computing clusters are placed arbitrarily, the absence of excessive network
interaction is not guaranteed.

3.3 The scheduling algorithm

To perform scheduling and rescheduling of partitions among all processes in
the distributed application, we implemented a special version of the genetic
algorithm(GA) as a part of our approach. The genetic algorithm was chosen
because its generality and ability to search through the whole solution space.

Our version of GA performs a search of optimal mapping between partitions
and processes.

The mutation operator is implemented as random choosing of a host process
for a random partition. As the crossover operator, the single-point crossover was
chosen. To speed up convergence of the algorithm, the mutation may happen
more than once per instance of the chromosome. The parameters of this GA
stayed the same for all experimental runs and were the following: size of pop-
ulation - 100, count of generations - 300, mutation probability - 0.7, crossover
probability - 0.3, selection operator - roulette wheel. The three-layer model was
used as a fitness function to estimate the resulting execution time of modelling
per iteration. The scheduling algorithm is used as before the start of the execu-
tion as during the runtime. In the latter case, the algorithm is being periodically
run according to a shift between the last estimated execution time of iteration
and the current value of that time.

3.4 The partition-based model of computations

To make the proposed approach working, it is necessary to introduce a model
to describe required computations. This model is responsible for: (a) integrating
of user-written computing functions into the framework based on the proposed
approach and (b) obtaining required for the three-layer model monitoring and
profiling data.

To achieve the stated goals, we propose the following model that can be easily
expressed on any high-level programming language.

Let introduce main entities: ait =< st, xt >, pkt =< Sp, {ait} >, ert+1 =<

{ajt+1}, lat+1 >, where ait is an agent, pkt is a partition, ert is an envelope, all of
them in moment t. An agent represents data the computing should happen on
(xt - location of the agent in modeling space, st - the rest of data associated

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

605



Title Suppressed Due to Excessive Length 7

with the agent). A partition represents an area in modeling space which has
a set of associated agents with it and some static information required for the
execution Sp. A partition serves as a unit of scaling. An envelope is a unit of
data transferring between two connected partitions.

The user has to supply two functions mu and gu to be used for computing
new state across all partitions and all agents on each node according to the
following transformations.

pkt+1 = mu(pkt , {ert})

lat+1 = gu(xt+1)

< pkt+1, {ert+1} >= f(m, g, pkt , {ert})

where mu - compute functions that implement the logic of modelling on the
set of agents belonging to the area and multiple agent inflows, gu - a function
that determines a partition the agent should reside to according to its new coor-
dinates xt+1 in the modelling space. Function f uses these user-defined functions,
partitions data and incoming flows of the agent to calculate new states and per-
form all service functionality including optimization of data exchange between
individual processes of the distributed applications.

4 Case Study: a large scale multiagent simulation of
urban traffic

4.1 Urban traffic simulation

To carry out experimental studies of the performance and scalability of the
proposed approach, a test case was developed for the field of multiscale mod-
elling of urban mobility of the population in urbanized areas. It was called City-
Simulator. In the developed example, we simulate the daily dynamics of people
moving around the city, taking into account the specifics of these movements -
from the sleeping areas to the city centre in the morning and from the centre
to the sleeping areas in the evening. The city is divided into areas of modelling,
the number of areas corresponds to the number of allocated computing resources
allocated to the application. Each area and agents inside it are modelled in inter-
relation with other areas because, during the simulation, agents move between
regions. This application assumes the dynamism of the computational load on
the processes associated with the movement of agents by location, each of which
is processed at the designated node for it.

Data on the mobility of the population on a city scale are simulated through
the software package sim city package, after which the output array is trans-
ferred to the sim district package software package, responsible for multiagent
modeling of individuals’ behavior on the scales of individual regions (in units),
the interaction between which does not involve large transmitted data and, as a
consequence, is not a determining factor when planning placement on the nodes.
The microscale modelling of the behaviour of agents within a set of small areas

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

606



8 D. Nasonov et al.

of the district (counted in hundreds, thousands and tens of thousands) is carried
out by multiple copies of the package sim object package. The amount of com-
munication between the instances of this package is most significant across the
entire application, as a result of which it is the determining one when planning
the placement of processes on the nodes, as provided by the extreme scaling (ES)
pattern[13]. An example of dividing a city into regions (the city is divided into
eight regions) and the general scheme of interaction taking into account intra-
and inter-district communication are presented on Figure 2).

Fig. 2. Example of computations structure in distributed application City-Simulator

To configure the parametric performance models, the City-Simulator appli-
cation is profiled depending on the size of the simulated area and the number of
simulated agents. The experiments were conducted on the resources of the com-
puting cluster of the University ITMO. The number of simulated agents ranged
from 100 to 500 thousand in increments of 100 thousand. The width of the
modelling area varied from 5 to 15 kilometres in increments of 2.5 km. The de-
pendence of the total calculation time and the time of data transfer between the
modelling blocks on the number of processes on which the sim object package
packet is placed, on one iteration is shown 3.

Figure 3 shows that the most intensive decrease in computation time is ob-
served in the range of 4 to 32 processes. Also, there is a significant increase in the
time spent on communication overhead, as the number of computing processes
increases. The initial reduction in communication time in each of the scenarios
(2-8 processes) is due to the placement of processes on one node from the cal-
culation of 8 processes to one physical computing node, which does not cause
network interaction between processes.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

607



Title Suppressed Due to Excessive Length 9

Fig. 3. City-Simulator execution time dependence on number of processes

The obtained results of performance profiling clearly show that the dis-
tributed application build with static partitioning of modelled areas doesn’t
scale well and eventually can’t fully utilize available resources. With the growth
of the simulation scale and preserving the same or close patterns of agents dy-
namic - e.g. increases in the number of agents and/or a number of areas - the
problem with efficient resources utilization is getting worse. The latter makes
the user wait more and thus slows down research speed. Using the proposed ap-
proach is possible to ease the pain caused by this problem by improving scaling
capabilities of the application exploiting patterns in its dynamic.

For this test case, the application execution scheduling component can pro-
vide planning optimization through the methods described in The approach sec-
tion - accounting for agent movements between modelling areas when scheduling
tasks and load balancing of compute nodes by reconfiguring the grid.

4.2 Experimental results

The experiments were carried out - with and without application of adaptations
of the computational template to the application. Activity modelling was carried
out for 6 million agents to produce simulations on a city scale both regarding the
size of the calculation area and regarding the size of the population of agents.
The application was planned for 100, 200, 500 and 1000 cores. The results of the
experiments are shown in Figure 4. As can be seen from the graph, for exper-
iments without the use of adaptations, the total simulation time with changing
in the number of processes from 100 to 200 decreases (by 9%), but with a further
increase in the number of computing cores, the total execution time increases
(by 7% at 500 cores and 33% for 1000 cores). Such an effect, first of all, is due
to the fact that when planning tasks, the adjacency matrices of the movements

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

608



10 D. Nasonov et al.

of agents are not taken into account, which entails a considerable increase in the
network interaction between the processes. In addition, the lack of reconfigura-
tion of the calculated grid also slows down the execution of the application due
to the uneven load on modelling processes. For the experiment with the use of
adaptation, we can see a decrease in execution time by 32% in the first case and
by 18% in the second one. Despite the slowing down of the rate for execution
speedup, the proposed approach can deliver significant improvement in efficiency
of resource utilization and thus to scale for the distributed application.

Fig. 4. Performance comparison of classical static partitioning approach and the pro-
posed approach in case of City-Simulator distributed application

The results of the experiments in the scenario using the modelling template
adaptations demonstrate a stable decrease in execution time with an increase
in the number of computational cores. However, it is worth noting that the
change in execution time slows down as the number of cores increases. This
is due to the fact that even with the use of adaptations of the computational
template with a large number of modelling processes, the contribution of network
interaction inevitably increases, which is not capable of completely levelling even
the InfiniBand data transmission channel.

To further analyze the results obtained, changes in the computational load of
modelling processes over time were investigated. Since the computational load
is expressed in terms of the number of simulated agents in a certain process, for
the simulation experiment with 1000 computational cores, data was collected
on the number of agents at each time point and the dynamics of the change in
the number of agents for scenarios with and without reconfiguration of the grid
was analyzed. Figures 5 – 6 show the graphs of three processes in which the
characteristic effects of the optimization performed by the PC EO are visible

For the process, the graphs of which are represented in Figure 5, by reducing
the cell size it is possible to reduce the computational load on average from 2500
to 1000 agents per iteration. In the process, the graphs of which are shown in
Figure 6, the situation was the reverse - at a certain stage of modeling the load
dropped and fell almost to zero. By distributing the load from other processes

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

609



Title Suppressed Due to Excessive Length 11

Fig. 5. Workload decreasing for a processes in City-Simulator

it was possible to increase the workload of the process, thereby reducing the
probability of downtime.

Fig. 6. Workload increasing for a processes in City-Simulator

Analysis of simulation results in individual processes showed that the recon-
figuration of the computational grid allows relatively equalizing the computa-
tional load on the processes that perform agent modeling of the movement of
people in the urban environment. This factor, coupled with the contiguity ma-
trices in the planning process, allows you to significantly optimize the execution
of the application and ensure its scalability on a large number of compute nodes.

5 Conclusion

The experimental case study demonstrated an improvement in execution time
with the growth of exploited cores for: up to 32% in case of 200 cores, up to 18%
in case of 500 cores thus showing that the proposed approach is able to deliver
significant improvement in efficiency of scaling for distributed applications. This

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

610



12 D. Nasonov et al.

research is financially supported by The Russian Science Foundation, Agreement
#14-11-00823

References

1. Liu, L., Zhang, M., Buyya, R., & Fan, Q. (2017). Deadlineconstrained coevolu-
tionary genetic algorithm for scientific workflow scheduling in cloud computing.
Concurrency and Computation: Practice and Experience, 29(5)

2. Zhou, N., Qi, D., Wang, X., Zheng, Z., & Lin, W. (2017). A list scheduling algorithm
for heterogeneous systems based on a critical node cost table and pessimistic cost
table. Concurrency and Computation: Practice and Experience, 29(5).

3. Visheratin, A. A., Melnik, M., & Nasonov, D. (2017, September). Dynamic
Resources Configuration for Coevolutionary Scheduling of Scientific Workflows
in Cloud Environment. In International Joint Conference SOCO17-CISIS17-
ICEUTE17 Len, Spain, September 68, 2017, Proceeding (pp. 13-23). Springer,
Cham.

4. Visheratin, A. A., Melnik, M., & Nasonov, D. (2016). Automatic Workflow Schedul-
ing Tuning for Distributed Processing Systems. Procedia Computer Science, 101,
388-397.

5. Chen, H., Zhu, X., Qiu, D., Guo, H., Yang, L. T., & Lu, P. (2016, August). EONS:
minimizing energy consumption for executing real-time workflows in virtualized
cloud data centers. In Parallel Processing Workshops (ICPPW), 2016 45th Interna-
tional Conference on (pp. 385-392). IEEE.

6. Wang, Y., Shi, W., & Kent, K. B. (2016). On Optimal Scheduling Algorithms for
Well-Structured Workflows in the Cloud with Budget and Deadline Constraints.
Parallel Processing Letters, 26(02), 1650009.

7. Balis, B. (2016). HyperFlow: A model of computation, programming approach and
enactment engine for complex distributed workflows. Future Generation Computer
Systems, 55, 147-162.

8. Zenmyo, T., Iijima, S., & Fukuda, I. (2016, December). Managing a complicated
workflow based on dataflow-based workflow scheduler. In Big Data (Big Data),
2016 IEEE International Conference on (pp. 1658-1663). IEEE.

9. Borgdorff, J., Belgacem, M. B., Bona-Casas, C., Fazendeiro, L., Groen, D., Hoenen,
O.,& Dubitzky, W. (2014). Performance of distributed multiscale simulations. Phil.
Trans. R. Soc. A, 372(2021), 20130407.

10. Lu, S., Li, R. M., Tjhi, W. C., Lee, K. K., Wang, L., Li, X., & Ma, D. (2011,
November). A framework for cloud-based large-scale data analytics and visualiza-
tion: Case study on multiscale climate data. In Cloud Computing Technology and
Science (CloudCom), 2011 IEEE Third International Conference on (pp. 618-622).
IEEE.

11. da Silva, R. F., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., & Deelman,
E. (2017). A characterization of workflow management systems for extreme-scale
applications. Future Generation Computer Systems, 75, 228-238.

12. Belgacem, M. B., & Chopard, B. (2017). MUSCLE-HPC: A new high performance
API to couple multiscale parallel applications. Future Generation Computer Sys-
tems, 67, 72-82.

13. Alowayyed, S., Groen, D., Coveney, P. V., & Hoekstra, A. G. (2017). Multiscale
computing in the exascale era. Journal of Computational Science, 22, 15-25.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

611


