
Analysis of Means of Simulation Modeling of Parallel

Algorithms

Weins D.V. 1[0000-0003-3909-5249]
, Glinskiy B.M.2[0000-0002-0119-6370] and Chernykh I.G.

3[0000-0001-9564-1553]

1 The Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosi-

birsk, Russia
vins@sscc.ru

2 The Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosi-

birsk, Russia
gbm@opg.sscc.ru

2 The Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosi-

birsk, Russia
chernykh@parbz.sscc.ru

Abstract. At the ICMMG, an integral approach to creating algorithms and

software for exaflop computers is being developed. Within the framework of

this approach, the study touches upon the scalability of parallel algorithms by

using the method of simulation modeling with the help of an AGNES modeling

system. Based on a JADE agent platform, AGNES has a number of essential

shortcomings in the modeling of hundreds of thousands and millions of inde-

pendent computing cores, which is why it is necessary to find an alternative tool

for simulation modeling.

Various instruments of agent and actor modeling were studied in the applica-

tion to modeling of millions of computing cores, such as QP/C++, CAF, SOb-

jectizer, Erlang, and Akka. As a result, on the basis of ease of implementation,

scalability, and fault tolerance, the Erlang functional programming language

was chosen, which originally was developed to create telephony programs. To-

day Erlang is meant for developing distribution computing systems and in-

cludes means for generating parallel lightweight processes and their interaction

through exchange of asynchronous messages in accordance with an actor mod-

el.

Testing the performance of this tool in the implementation of parallel algo-

rithms on future exaflop supercomputers is carried out by investigating the

scalability of the statistical simulation algorithm by the Monte Carlo methods

on a million computing cores. The results obtained in this paper are compared

with the results obtained earlier by using AGNES.

Keywords: Simulation Modeling, Actor Model, Scalability, Erlang

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

64

mailto:gbm@opg.sscc.ru

2

1 Introduction

According to the calculations given by D. Dongarra, the performance of supercom-

puters in exaflops will be reached by 2018-2020. Supercomputers will be able to

serve 1 billion computing flows simultaneously. The number of cores will reach 100

million. The creation of exaflop supercomputers will require the development of par-

allel algorithms that can use tens and hundreds of millions of computing cores. The

authors of the article develop an integral approach to developing algorithms and soft-

ware for modern and future supercomputers. The approach is based on the technique

for the development of algorithms and software for supercomputers of peta and exa-

flop levels, containing three related stages. The first stage is determined by co-design,

which is understood as adapting the computational algorithm and mathematical meth-

od to a supercomputer architecture at all stages of the problem solution. The second

stage is the development of preventive algorithms and software for the most promis-

ing supercomputers on the basis of simulation modeling for a given supercomputer

architecture. The third stage is associated with estimating the energy efficiency of the

algorithm for various implementations on this architecture or on various architectures

[1].

This approach was tested on computationally complex problems of astrophysics,

plasma physics, geophysics, and stochastic problems. The concept of co-design in the

context of mathematical modeling of physical processes is understood as the construc-

tion of a physico-mathematical model of a phenomenon, numerical method, and par-

allel algorithm with its software implementation, which effectively uses the super-

computer architecture [2, 3].

An important component of the integral approach is simulation modeling, which al-

lows investigating the scalability of a parallel algorithm on a given supercomputer

architecture, determining the optimal number of computational cores to implement

computations, and revealing bottlenecks in its execution.

The problem of modeling of scalable algorithms is not new - many groups of re-

searchers in the world are engaged in it. Among foreign studies, we note the ones

carried out in the US (University of Urbana-Champagne, Illinois). They are mainly

engaged in estimating the performance of algorithms implemented with the use of

MPI [4]. One of the main projects of this team is the BigSim project. The project is

aimed at creating an imitation environment that allows the development, testing, and

adjustment through the modeling of future generations of computers, while allowing

for computer developers to improve their design solutions with a special set of appli-

cations. Among domestic studies, we note the ones conducted at the Ivannikov Insti-

tute for System Programming of the Russian Academy of Sciences (Moscow). This

team developed a parallel program model that can be effectively interpreted on an

instrumental computer, enabling fairly accurate prediction of the time of real execu-

tion of a parallel program on a given parallel computing system. The model is de-

signed for parallel programs with explicit messaging, written in Java language with

the use of the MPI library, and is included in the ParJava environment.

It is worth noting that both of the projects considered do not take into account (at least

explicitly) the issues of fault tolerance in the execution of large programs, while the

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

65

3

use of tens of millions of computing cores at the same time is extremely urgent. The

ParJava project, on the one hand, allows solving a wide range of problems for esti-

mating the performance of parallel programs on promising computing systems, but,

on the other hand, is tied to a specific programming language, which significantly

reduces its capabilities.

The implementation of simulation modeling made it possible to investigate the scala-

bility of algorithms for solving problems in astrophysics, plasma physics, geophysics,

and problems using the Monte Carlo methods [1, 5]. The modeling was carried out on

the basis of an AGNES multiagent system [6], with which it was possible to trace the

behavior of algorithms up to several million computing cores. However, a further

increase in the number of simulated computing cores proved to be difficult due to the

limitations typical of the JADE platform, on the basis of which the AGNES system

was built. Therefore, it became necessary to analyze other methods and tools, particu-

larly based on an actor model. An actor model is a special technique for implementing

agent modeling systems to reduce the overheads of agent communication [7].

2 Limitations of the AGNES Modeling System and Ways

to Overcome Them.

In the study of the possibility to scale different algorithms to a large number of

computational cores, the task of simulating the execution and communication of hun-

dreds of thousands and millions of computational threads arose. The perfect approach

for this purpose is an agent-based approach to modeling systems containing autono-

mous and interacting intellectual agents [8]. As a tool, the AGNES modeling system

[7] was used, based on the JADE multiagent modeling platform [9]. This system had

several advantages and disadvantages.

Using the JADE platform in the separation of the agent functionality into a set of

behaviors makes it easy to parallelize the execution of independent behaviors. By

default, the agent manager of each agent within the platform has its own flow, and all

behaviors of the agent are carried out within this flow. However, the behavioral infra-

structure itself introduces additional computational costs, especially in a single-flow

performance. Also, significant overheads are introduced by the messaging system. It

is extremely flexible and allows for standard means to transfer complex types of data,

but all this at the expense of performance.

The JADE platform also provides for the partitioning of agents within the platform

into containers that can reside on different hosts. If it is possible to minimize the ex-

change of messages between containers, then an increase in the number of hosts en-

hances the performance of such a system. However, in modeling systems where "all

agents are connected to each other”, the system runs slower and slower.

In general, practice shows that the simultaneous launch of more than 1,000-2,000

simple interacting agents on a single average computing node causes a noticeable

decrease in performance.

To overcome these shortcomings, various methods and techniques are used to run

simulation models of algorithm behavior. The possibility of simulation of a large

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

66

4

number of computational threads on a node requires that one agent simulates the be-

havior of a group of similar computational threads, each of which is an independent

behavior of this agent and is executed in parallel. To minimize the exchange of mes-

sages between agents, the messages from different behaviors within the agent are

formed into an array and forwarded to another agent as a single complex message.

This allowed us to study the feasibility of scaling various algorithms into millions of

computing cores.

Each algorithm under investigation has some special features. The special feature

of algorithms for solving distributed statistical modeling problems using the Monte

Carlo methods is the necessity for modeling an extremely large number of independ-

ent implementations. A feature of parallel grid methods in solving hyperbolic equa-

tions is the possibility of geometric decomposition of the computational domain and

subsequent exchange of boundary values only between neighboring computing nodes.

Below are the results of the study of the scalability of algorithms for solving the prob-

lems of astrophysics, plasma physics, and seismics and the problems using the Monte

Carlo methods by means of the AGNES agent-based system (Fig. 1).

3.5 4 4.5 5 5.5 6 6.5 7

0.7

0.8

0.9

1

E
ff
ic

ie
n
c
y

log(Cores)

Velocity approach

Offset approach

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0

20

40

60

80

100

E
ff
ic

ie
n
c
y

log(Cores)

Theory

AGNES

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0.7

0.8

0.9

1

1.1

E
ff
ic

ie
n
c
y

log(Cores)

Intel Xeon E5-2697

GPU (Kepler)

Xeon Phi 7110 (offload)

Xeon Phi 7110 (native)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

0.6

0.7

0.8

0.9

1

E
ff
ic

ie
n
c
y

log(Cores)

Intel Xeon

GPU (Kepler)

GPU (Tesla)

Monte-Carlo

AstroPhi PlasmaGrid

Seismicity

Fig. 1. Study of the scalability of different algorithms by means of the AGNES agent-based

system

The upper section of the figure illustrates the results of the study of scalability of

algorithms for solving the problem of direct statistical modeling by the Monte Carlo

method and the seismic task in solving the problem in terms of displacement and

stress velocities and in terms of displacements. Calculations were carried out on an

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

67

5

NKS-30T cluster with graphic accelerators [10]. The bottom section of the figure

shows the results of the study of scalability of the astrophysical code and the physics

code of plasma [11]. In this case, the scaling of algorithms on clusters with MPP ar-

chitecture and using GPU and Phi is under study. It can be seen from the figure that

about 1 million computing cores can be effectively used to solve these problems, but

the efficiency drops sharply with a greater number of cores. A similar situation is

observed in the solution of stochastic problems, where the computations are inde-

pendent and there are practically no exchanges [5]. For parallel grid methods, a de-

crease in efficiency with rising number of computing cores is associated with an ava-

lanche-like increase in message exchanges between the cores. For distributed statisti-

cal modeling, this decrease is due to the fact that the assembler node does not manage

to process a large number of messages with intermediate data. The question arises: is

this behavior of algorithms is primarily due to the calculation scheme or is it a feature

of the chosen simulation modeling system?

In this regard, the task is to find an alternative modeling technique that helps elim-

inating the shortcomings of the JADE platform, as well as tools for working with it.

3 Analysis of Means of Simulation Modeling of Parallel

Algorithms

3.1 Actor Model

An actor model is a mathematical model of parallel computations that treats the

concept of "actor" as a universal primitive of parallel numerical calculation: in re-

sponse to received messages, the actor can make local decisions, create new actors,

send messages, and determine how to respond to following messages. It is not as-

sumed that there is a certain sequence of the above-described actions, and all of them

can be performed in parallel. The model was created in 1973, and it was used as a

basis for understanding the calculus of processes and as a theoretical basis for a num-

ber of practical implementations of parallel systems [12].

The actor model is characterized by the inherent parallelism of calculations within

one actor and between actors, dynamic creation of actors, inclusion of actors' address-

es in messages, and also interaction only through direct asynchronous messaging

without any restrictions on the order of arrival of messages.

The actor model has some characteristic distinctive features:

1. Unlimited indeterminism. There is no global state in the actor model.

2. Messages in the actor model are not necessarily buffered. This is its difference

from the rest of the approaches to a model of simultaneous computations. In addi-

tion, messages in the actor model are simply sent, and there is no requirement for a

synchronous handshake with the recipient.

3. Creating actors and inclusion of addresses of participants into messages means that

the actor model has potentially variable topology in their relationships with each

other. According to the communication model, the message does not have any

mandatory fields, they can all be empty. However, if the sender of the message

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

68

6

wishes the recipient to have access to addresses that the sender does not have yet,

the address should be sent in the message.

4. Unlike other approaches, based on the combination of sequential processes, the ac-

tor model was developed as a simultaneous model in its essence. As written in the

theory of actor models, the sequence therein is a special case arising from simulta-

neous calculations.

5. The main innovation of the actor model is the introduction of the concept of behav-

ior, defined as a mathematical function expressing the actor’s actions when it pro-

cesses messages, including determining a new behavior for processing the next

message arrived. The behavior ensures the functioning of the mathematical model

of parallelism and also frees the actor model from implementation details..

These and many other ideas introduced in the actor model are also used now in

agent modeling systems. The actor model, in particular, is used in agent systems to

minimize overheads in agent communication [7]. The key difference from agent mod-

eling is that the system agent imposes additional restrictions on actors, usually requir-

ing that they use commitments and goals. It is due to the advantages listed above that

the use of the actor model to study the scalability of parallel algorithms seems very

promising. Note that there are many papers on presentation and implementation of

algorithms on the basis of the Actor model, but it has not yet been applied as a tool for

investigating the scalability of parallel algorithms.

3.2 QP/C++, CAF and Sobjectizer

Let us consider tools and frameworks that allow implementing the concept of the

actor model in C++. As C++ is a widely known native language, which makes it pos-

sible to switch easily from the lowest level close to hardware to a very high level,

such as OOP and general programming. At the same time, this language is provided

with a wide range of tools, books, and documentation.

Strictly speaking, there are not too many ready-made implementations of the actor

model. Among popular and actively developing frameworks for C++, C++ Actor

Framework (CAF) [13], QP/C++ [14], and SObjectizer (SO) [15] can be distin-

guished.

OpenSource project under the BSD license is C++ Actor Framework. Also known

as CAF and libcppa, it is the most famous implementation of the actor model for C++.

This is an easy-to-use framework with a specific syntax that maximally fully imple-

ments the principles of actor models. The scope of CAF is limited to the Linux plat-

form. The CAF developers themselves describe it as the most productive framework.

It also offers ready-made tools for creating distributed applications.

QP/C++ is a software product under a double license, designed to develop embed-

ded software, including real-time systems and systems that can work directly on

hardware implementation.

Actors in QP/C++ are called active objects and represent hierarchical finite-state

machines. The code of actors can be typed in the form of ordinary C++ classes, and

an actor can be drawn in a special tool for visual modeling and its code is generated

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

69

7

automatically. Active objects in QP/C++ work on a context that QP allocates to them.

Depending on the environment, active objects can work each on their own thread or

they can share a common working context.

SObjectizer is an OpenSource project under the BSD license, has been developed

since 2002, and is based on the ideas created and tested when building a small object-

oriented SCADA system. SObjectizer is created specifically to simplify the develop-

ment of multi-thread software in C++. Therefore, in SObjectizer, much attention is

paid to compatibility. What SObjectizer does not currently provide is ready-made

tools for constructing distributed applications.

Actors in SObjectizer are called agents. As in QP/C++, agents in SObjectizer are,

as a rule, instances of individual C++ classes. Just like in QP / C++, agents are hierar-

chical finite-state machines. Just like in QP/C++, the working context for agents is

provided by the framework. For this purpose, SObjectizer includes a dispatcher,

which is a special entity that performs dispatching of agent events. SObjectizer

strongly differs from the above-mentioned projects in that SObjectizer sends messag-

es not directly to the recipient agents, but in mboxes (mailboxes). From an mbox, a

message is delivered to those agents who are subscribed to it.

3.3 Erlang and Akka

When it comes to the actor model, one cannot help but mention Erlang, and, speak-

ing of Erlang, one cannot help but talk about the actor model. Erlang is a functional

programming language with strong dynamic typing, designed to create distributed

computing systems [17]. It is developed and supported by Ericsson for writing pro-

grams for telephony. Erlang inherited its syntax and some concepts from the Prolog

logical programming language. This language includes means of generating parallel

lightweight processes and their interaction through the exchange of asynchronous

messages in accordance with the actor model.

Erlang was purposefully designed for use in distributed, fault-tolerant, parallel real-

time systems, for which, in addition to the language itself, there is a standard library

of modules and library templates, known as an OTP framework. The program on

Erlang is translated into bytecode, executed by virtual machines located on different

nodes of a distributed computer network.

The popularity of Erlang began to grow due to the expansion of its application area

(telecommunication systems) to highly loaded parallel distributed systems serving

millions of WWW users, such as chats, content management systems, web servers,

and distributed databases requiring scaling. A great number of products are developed

on Erlang, and many companies use Erlang as a key tool.

Also speaking of the actor model, one cannot fail to mention the Akka framework

for the Scala and Java languages [16]. Actors in Akka are instances of separate classes

executed on JVM virtual machines located on different nodes of a distributed com-

puter network. The actor in Akka consists of several interacting components: the ac-

tor's dispatcher and the actor itself. The dispatcher is responsible for placing messages

in the queue leading to the mailbox of the actor and also orders this box to remove

one or more messages from the queue (but only one at a time) and transfer them to the

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

70

8

actor for processing. Last but not least: the actor is usually the only API that needs to

be implemented, and it encapsulates the state and behavior. Akka does not allow di-

rect access to the actor, so it guarantees that the only way to interact with the actor is

through asynchronous messages.

Akka is widely used in the field of Web and online services (for example, Twitter

and LinkedIn).

There are several key factors that explain the popularity of Erlang and Akka among

modern developers:

─ Simplicity of development. Using asynchronous messaging greatly simplifies the

work when one has to deal with concurrent computing;

─ Scaling. The actor model allows creating a huge number of actors, each of which is

responsible for its particular task. The shared nothing principle and asynchronous

messaging allow building distributed applications that are scaled horizontally as

much as needed;

─ Fault tolerance. A failure of one actor can be caught by other actors, who take ap-

propriate actions to restore the situation. Also, if some lightweight process within

Erlang VM performs division by zero, then Erlang VM simply closes one of these

processes, and this will not affect the performance of other processes. However, if

there is division by zero in one of the threads of a multithread application on C++,

then the entire application crashes.

4 Experimental Study

To test the performance of the tools under consideration, a model of execution of

the algorithm for solving the problem of distributed statistical modeling using the

Monte Carlo methods is implemented on each of them. Unfortunately, due to prob-

lems with licensing, QP/C++ does not participate in this experiment. Such parameters

as the amount of code for the description of actors, acceleration from parallelization,

and the total simulation time are explored.

When simulating computations with the help of actors, threads-collectors and

threads-calculators are simulated. Threads-calculators at each iteration of the calcula-

tion cycle determine the independent implementation and transmit the result of inter-

mediate averaging to threads-collectors. The results obtained are averaged by thread-

collectors. The calculation is carried out until the required level of the permissible

relative statistical error is reached. Calculations on different threads-calculators are

performed in an asynchronous mode. The calculation results are sent and received

also in an asynchronous mode.

A comparison of the number of symbols needed to describe the actors/agents in the

tools under consideration is shown in Figure 2. As can be seen from the figure, the

most concise description is obtained in Erlang and Akka. This can be explained by the

fact that very many mechanisms for memory distribution and allocation, balancing,

and messaging are already implemented within these tools.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

71

9

Fig. 2. Comparing the amount of programming code in the description of actors/agents in dif-

ferent tools

As is known, the theoretical acceleration for paralleling for statistical modeling

methods is practically "ideal", i.e., the calculation time decreases in proportion to an

increase in the computing nodes. This criterion is used to study the effectiveness of

these computational algorithms.

We consider the resulting data on the scalability of the algorithm (Fig.3) and data

on the execution time of the model (Fig. 4) for various tools. For clarity, the charts

show the theoretical acceleration for this algorithm and the results obtained earlier

with the help of AGNES.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

20

40

60

80

100

120

R
e

la
ti
v
e

 a
c
c
e
le

ra
ti
o
n

 S
(M

)

l g()o Cores

Theory

AGNES

CAF

SObjectizer

Erlang

AkkA

Fig. 3. Study of the scalability of the algorithm for solving the problem of direct sta-

tistical modeling using the Monte Carlo methods by means of various tools.

0

5000

10000

15000

20000

25000

AGNES AkkA Sobjectizer CAF Erlang

Number of code symbols when
writing the model

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

72

10

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

20

40

60

80

100

120

140

160

180

200

E
x
e
c
u

ti
o
n
 t

im
e

m
in

,

 l g()o Cores

AGNES

CAF

SObjectizer

Erlang

AkkA

Fig. 4. Time for calculating the algorithm execution model on various tools.

Previously, similar behavior of the investigated algorithm (Fig.3) was explained

this way: as soon as the time for sending and processing messages from all calculators

after one iteration of calculations begins to exceed the time for this iteration, the ac-

celeration gain slows down and the scaling is no longer observed on a certain number

of the effect calculators (the line becomes parallel to the X axis). There are two possi-

ble ways to extend the effect of acceleration from the increasing number of cores. The

first one is via hardware: reduction of the transmission and processing time of the

message. The second one is algorithmic: construction of a hierarchical model for col-

lecting intermediate results [5]. As can be seen from Fig. 3, the exchange of short,

asynchronous messages in the actor model allowed us to obtain more accurate data on

the scalability of the algorithm. The messaging model in AGNES introduced an addi-

tional delay in communications. Some difference between the tools implementing the

actor model can be explained by various implementations of the messaging process.

The fact that, in some implementations, there is a slowdown on the right part of the

chart can be explained by the avalanche-like increase in incoming messages to the

thread-collector that the message queue either cannot handle correctly or cannot han-

dle at all. It is worth noting that, the desired (one million or more) number of actors

failed to run on some tools.

It is possible to evaluate the performance of the tools implementing the actor mod-

el on the basis of Fig. 4. It is not for nothing that the Akka framework and the Erlang

programming language are the recognized leaders in implementing the actor model

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

73

11

because they showed the best performance. The CAF and SObjectizer tools are a little

behind them.

5 Conclusion

As experiments have shown, the use of the actor model to simulate the execution

of parallel algorithms allows one to get rid of a number of significant disadvantages

of the JADE platform. The process of modeling of millions of computing cores is

significantly lesser affected due to the use of simple and asynchronous messages. And

the idea of using multiple lightweight (memory-wise) actors makes it possible to

achieve the simulation of execution of required millions of computing cores.

Among the tools, libraries, and languages implementing the actor model, a special

place is occupied by the Erlang programming language. In it, the concept of the actor

model is most fully implemented. This was confirmed in the course of the experi-

mental study of the performance of these tools.

The experimental research has shown that, due to such parameters as ease of im-

plementation, scaling, and fault tolerance, the Erlang functional programming lan-

guage is most suitable for investigating the scalability of algorithms using simulation

modeling methods.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grants

No. 16-07-00434, 18-37-00279, and 18-07-00757).

The Siberian Supercomputer Center of the Siberian Branch of the Russian Acade-

my of Sciences (SB RAS) is gratefully acknowledged for providing supercomputer

facilities.

References

1. Glinskiy B.M., Kulikov I.M., Chernykh I.G., Snytnikov A.V., Sapetina A.F., Weins D.V.:

The integrated approach to solving large-size physical problems on supercomputers.

RuSCDays 2017. CCIS. 2017. Vol. 793, pp. 278–289. DOI: 10.1007/978-3-319-71255-

0_22.

2. Glinskiy B., Kulikov I., Snytnikov A., Romanenko A., Chernykh I.,Vshivkov V. Co-

design of Parallel Numerical Methods for Plasma Physics and Astrophysics // Supercom-

puting Frontiers and Innovations. – 2014. – V. 1, I. 3. – P. 88-98.

3. Glinsky, B., Kulikov, I., Chernykh, I., Weins, D., Snytnikov, A., Nenashev, V., Andreev,

A., Egunov, V., Kharkov, E. The Co-design of Astrophysical Code for Massively Parallel

Supercomputers Proceedings of 16th International Conference on Algorithms and Archi-

tectures for Parallel Processing (ICA3PP) Lecture Notes in Computer Science, 2016, Т:

10049 P: 342-353.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

74

12

4. T. Hoefler, T. Schneider and A. Lumsdaine: "LogGOPSim - Simulating Large-Scale Ap-

plications in the LogGOPS Model

5. Glinsky B., Rodionov A., Marchenko M., Podkorytov D., Weins D. Scaling the Distribut-

ed Stochastic Simulation to Exaflop Supercomputers // Proceedings of the 14th IEEE In-

ternational Conference on High Performance Computing and Communications (HPCC-

2012). 2012. P. 1131–1136.

6. Podkorytov, D., Rodionov, A., Choo, H.: Agent-based Simulation System AGNES for

Networks Modeling: Review and Researching. Proc. of the 6th Int. Conference on Ubiqui-

tous Information Management and Communication (ACM ICUIMC 2012), ISBN 978-1-

4503-1172-4, pp. 115. ACM (2012) DOI: 10.1145/2184751.2184883.

7. Mueong J., Gul A. Agent framework services to reduce agent communication overhead in

large-scale agent-based simulations // Simulation Modelling Practice and Theory. Vol. 14,

i. 6, pp. 679-694.

8. Oren T. On the Synergy of Simulation and Agents: An Innovation Paradigm Perspective /

T. Oren, L. Yilmaz // International J. of Intelligent Control and Systems. – 2009. – V. 14,

№1. – P. 4 – 19.

9. JADE Homepage, http://jade.tilab.com/, last accessed 2018/04/10.

10. Boris M. Glinskiy, Anna F. Sapetina, Valeriy N. Martynov, Dmitry V. Weins, Igor G.

Chernykh The Hybrid-Cluster Multilevel Approach to Solving the Elastic Wave Propaga-

tion Problem // PCT 2017, CCIS. 2017. Vol. 753, pp. 261–274. DOI: 10.1007/978-3-319-

67035-5_19.

11. Boris M. Glinskiy, Igor M. Kulikov, Igor G. Chernykh, Alexey V. Snytnikov, Anna F. Sa-

petina, Dmitry V. Weins The Integrated Approach to Solving Large-Size Physical Prob-

lems on Supercomputers // Supercomputing. RuSCDays 2017. CCIS. 2017. Vol. 793, pp.

278–289. DOI: 10.1007/978-3-319-71255-0_22.

12. Карл Хьюитт, Питер Бишоп, Ричард Штайгер: Универсальный модульный форма-

лизм акторов для искусственного интеллекта. IJCAI, 1973

13. CAF - C++ Actor Framework, http://www.actor-framework.org/, last accessed 2018/04/10.

14. QP/C++: About QP/C++, http://www.state-machine.com/qpcpp/, last accessed 2018/04/10.

15. SObjectizer /Wiki /Home, https://sourceforge.net/p/sobjectizer/wiki/Home/, last accessed

2018/04/10.

16. AkkA, https://akka.io/, last accessed 2018/04/10.

17. Erlang Programming Language, http://www.erlang.org/, last accessed 2018/04/10.

18. F. Cesarini, S. Thompson. Erlang Programming. — O’Reilly Media, Inc., 2009. —

498 p. — ISBN 978-0-596-51818-9.

Суперкомпьютерные дни в России 2018 // Russian Supercomputing Days 2018 // RussianSCDays.org

75

https://experts.illinois.edu/en/publications/agent-framework-services-to-reduce-agent-communication-overhead-i
http://www.actor-framework.org/
https://ru.wikipedia.org/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/9780596518189

