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Abstract. The paper proposes an implementation of the Branch-and-
Bound method for an enterprise grid based on the BOINC infrastructure.
The load distribution strategy and the overall structure of the developed
system are described with special attention payed to some specific issues
such as incumbent updating and load distribution. The implemented
system was experimentally tested on a moderate size enterprise grid.
The achieved results demonstrate an adequate efficiency of the proposed
approach.

Keywords: BOINC · Branch and Bound · Distributed Computing

1 Introduction

Desktop grids is a rapidly growing platform for distributed computing. The most
popular software for desktop grids is BOINC (Berkeley Open Infrastructure for
Network Computing) [7]. In a nutshell, BOINC is a system that can harness
the unused computing power of desktop machines for processing resource de-
manding applications. Potentially, such grids can collect a tremendous amount
of resources. However, efficient usage of this power can be a rather complicated
task due to heterogeneity and irregularity of desktop grids.

Traditional approaches developed for standard HPC platforms are based on
some assumptions that are not valid in desktop grids. In particular, such ap-
proaches assume low-latency fast communications where each parallel processor
can serve both as a sender or a receiver. Clearly such approaches are not suitable
for BOINC grids where communications are possible only between the server and
a client node and are initiated by a client. BOINC communications have high
latency as they involve several services and a file system.

Thus, we can conclude that developing new efficient distributed algorithms
suitable for desktop grids is an important research direction. In this paper, we
consider the implementation of tree-structured computations in desktop grids.
Such computational schemes are remarkably popular in global optimization, in
particular, with Branch-and-Bound family of methods. The paper is organized as
follows. Section 2 discusses existing approaches for solving global optimization
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problems in distributed computing environment. Section 3 outlines the struc-
tural, algorithmic and implementation details of the proposed approach. Exper-
imental results are presented in Section 4.

2 Related work

Branch-and-bound is a universal and well-known technique for solving optimiza-
tion problems. It interprets the input problem as the root of a search tree. Then,
two basic operations are recursively executed: branching the problem (node)
into several smaller (hopefully easier) problems, and bounding (pruning) the
tree node. At any point during the search tree traversal, all subproblems can
be processed independently. The only shared resource is the incumbent. Hence,
processing the search tree in a distributed way is considered rather natural and
has been studied for decades. Since the size and the structure of the branch-
and-bound tree are unknown in advance, the even distribution of computations
among processors is a challenging task. Load balancing has been comprehen-
sively studied for tightly-coupled multiprocessors. Most efficient schemes use
intensive communication among processors to approach uniform distribution.
Unfortunately, this approach is not suitable for volunteer desktop grids where
direct communications among computing nodes are normally not allowed.

The solution for distributed systems consisting of computational resources
connected via wide-area networks (WAN) was proposed in [5, 6].

In [20] authors describe the AMPLX toolkit that enables modifying any
AMPL script to solve problems by a pool of distributed solvers. The toolkit is
based on Everest platform [21] that is used to deploy optimization tools such as
web services and run these tools across distributed resources.

The BNB-Grid framework proposed in [4], [11] was aimed at running exact
(based on Branch-and-Bound) and heuristic search strategies on grids consisting
of heterogeneous computing resources. BNB-Grid uses different communication
packages on different levels: on the top level, it uses ICE middleware coupled
with TCP/IP sockets, and within a single computing element, either MPI or
POSIX Thread libraries are used. BNB-Grid was used to solve several challenging
problems from various fields, see e.g. [19].

The approach closest to ours was proposed in [8], where authors described a
grid enabled implementation of the branch-and-bound method for computational
grids based on the Condor [16] middleware. The suggested approach uses a
centralized load balancing strategy: the master keeps a queue of sub-problems
and periodically sends them to free-working nodes (slaves). When a sub-problem
is sent to the slave, it is either completely solved or the resolution process is
stopped after a given number of seconds while unprocessed subproblems are
sent back to the master. Authors reported successful results for several hard
quadratic assignment instances.

In comparison to that research, our major contribution is the implementation
of a branch-and-bound optimization problem solver for a conceptually different
platform. In addition, in our work, we suggest an effective algorithm of filtering
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tasks on the server side, which leads to a significant reduction in the computing
time.

There have been several attempts to use BOINC desktop grids to run Branch-
and-Bound method. Some preliminary experiments on solving knapsack prob-
lems on a small test BOINC system were presented in [22]. In [12] authors con-
sider an implementation of a back-track search in volunteer computing paradigm.
They present a simple yet efficient parallelization scheme and describe its appli-
cation to some combinatorial problems: Harmonious Tree and Odd Weird Search,
both carried out at the volunteer computing project yoyo@home. The paper also
presents a simplified mathematical analysis of the proposed algorithm.

3 Outline of the approach

Any BOINC application consists of the server and the client parts. The server
part running on the BOINC server is responsible for generating tasks and ag-
gregating their results obtained by client applications running on computational
nodes. In our case, the client part is a C++ application [3] that solves a global
box-constrained optimization problem with the Branch-and-Bound method. In-
terval analysis [14] is used to compute bounds on the objective. We used our
own implementation of interval analysis [2, 18] that allows to compute bounds
based on the C++ representation of an algebraic expression.

The general outline of our system is presented in Fig. 1. Like all BOINC
applications, it contains client and server parts. Server maintains creation, send-
ing, cancellation of tasks, and receiving and processing results. There is also a
number of client machines that receive tasks, perform calculations, and send the
achieved results back to the server.

The client reads the “state” from input file “in.txt” and writes the produced
output to “out.txt”. Both files are encoded in JSON format. The input files
contain the record (incumbent value) found so far, a set of sub-problems to
process and the maximal step limit. The step limit helps to bound the running
time to avoid long-running tasks. To make running times of tasks uniform, it is
suggested to aggregate several subproblems in one task. Omitting this suggestion
may lead to dramatic differences in time elapsed for tasks [15].

Similarly, an output file contains the number of iterations that were per-
formed, the record value, and a set of unprocessed subproblems in case if the
upper bound for iterations was exceeded. The workflow of this application is as
follows:

1. The pool of subproblems is initialized according to the input file.
2. The first subproblem D is extracted from the pool. Having it, the function

value f(cD) for the centre point cD of the feasible set XD of the subproblem
D is calculated along with the bound of the function’s values in XD.

3. The discovered value f(cD) is compared to the current record value fr. The
latter is possibly updated and the new incumbent solution is stored.

4. The optimality test is performed: if the lower bound of the current domain
is less than the record function value with the prescribed accuracy ε, the
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Fig. 1. Basic Workflow of the Developed System
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feasible set is divided in two across the greatest dimension and the generated
subproblems are added to the pool.

5. Steps 2-4 are repeated until the pool is empty or the number of performed
steps exceeds the limit.

6. After the computation process is over, the output JSON line is formed and
written to “out.txt” file.

This application was compiled for Linux, Windows, and OS X 32- and 64-bit
systems.

To run an application in a BOINC project, it is required either to imple-
ment the API for server-client communication or to use special wrappers [17],
[1] available in BOINC public resources. A wrapper is a special program for a
particular operating system and architecture that runs the provided functional
applications, ’feeds’ the tasks to them, and manages all types of communication
with the server. For our project, we decided to use the BOINC wrapper [1] for all
platforms, which resulted in lesser amounts of code along with the convenience
of tracking possible issues as wrappers provide detailed information regarding
the running application.

In the server part, there is a permanently running Python script [3] that
finds all uploaded files and processes their contents. Information from each file
is extracted and analyzed: the number of performed iterations is added to the
global counter, record data is updated, and received subproblems are added to
the global pool. After processing, the files are deleted as they are no longer
needed, and the formed pool of subproblems is merged with the previous ones
saved in the special file containing the pool of subproblems. Subproblems should
be also examined at the task formation step in order to avoid sending clearly
redundant ones.

Another job performed by the server part is the creation of new workunits.
One workunit aggregates a fixed number of subproblems S. It is well known that
in some cases the Branch and Bound method may not converge in a short time,
so it is worth restricting the total number of iterations for the whole problem
with a value denoted below as Ntotalmax. Besides subproblems and the record
value, each workunit stores the maximum number of iterations. This number if
computed as follows:

N = min

(⌊
Ntotalmax −Nperformed

Npool

⌋
, Nmax

)
, (1)

where Nperformed is the total number of iterations performed so far and Nmax

is the iteration threshold. Initially, it was suggested to generate workunits once
per a fixed amount of time, but then it turned out that decrease in this delay
time led to creation of a great number of redundant tasks. On the other hand,
increasing that amount of time caused a lack of workunits and consequently long
idle periods of client PCs. In general, we came to the following conclusion: the
later a subproblem is packaged to a workunit, the higher chances that it will
discarded by the optimality test are. Therefore, it was decided to implement
the ’on-demand’ model where new workunits are created when they are really
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needed. The script checks the number of unsent tasks, and if there are more than
T of them, it is concluded that new tasks are not necessary and the script stops
generating them.

Regardless of the application’s ’on-demand’ policy, it is still possible that
some submitted or running tasks could be discarded according to the fresh record
value. To handle this, all unsent or currently running tasks are examined. It leads
to the following rule: if for a task t

min
s∈t

lbs ≥ fr − ε, (2)

then the task should be cancelled. Here, s is a subproblem and lb(s) is its lower
bound. Indeed, if the inequality is valid than all subproblems in a task are
subject to discard and thus should not be processed. In case such redundancy is
discovered, the workunit is canceled using the respective BOINC command.

4 Experimental Results and Discussion

For our experiments, we use the following small enterprise [13] BOINC grid
system. The server runs on a single-board 64-bit ’Orange Pi 2’ machine, which
has 1 GB RAM and sustainable Internet access. Clients are collected from the
computer class: 12 32-bit machines with Intel Core 2 Duo E4600 CPUs with 2
GB RAM. The server machine uses Armbian OS, while clients run Linux Mint.

Parameters that were used by our load distribution algorithm are summarized
in Table 1. These values were experimentally selected.

Table 1. Load distribution algorithm parameters

Parameter Description Value

T the minimal number of workunits 5
in a queue to start
generating new tasks

S the (maximal) number of 2
subproblems in a workunit

Nmax the maximal number of steps 105

performed by a client

Ntotalmax the maximal total number 5 · 109

of steps to perform

For testing the system performance, we conducted a number of computa-
tional experiments within an enterprise grid consisting of identical machines that
have been described above. For testing, we considered benchmark optimization
problems Biggs Exp5 and Exp6 function from the test suite [2, 18]:{

FBiggsEXP6(x1, x2, ..., xN )→ min

xi ∈ [−20, 20], i ∈ 1, . . . , N.
(3)
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The objective function is defined as follows:

FBiggsEXP6(x1, x2, ..., xN ) =

13∑
n=1

(x3e
−tix1 − x4e−tix2 + x6e

−tix5 − yi)2, (4)

where

ti = 0.1i, yi = e−ti − 5e10ti + 3e−4ti (5)

The problem was solved for 5- and 6-dimensional functions. In the 5-dimensional
case, Biggs Exp6 function degenerates into Biggs Exp5 one, having ’x6’ replaced
with ’3’ in the described formula. The obtained results as functions of the num-
ber of machines are shown in Fig. 2-6 presenting the 5-dimensional experiments
measurements in blue color and the 6-dimensional ones in orange.

Fig. 2. Number of Performed Iterations

To evaluate efficiency of the implemented system, we use two main metrics,
which are the elapsed computational time and the relative time for one task that
is calculated in the following way:

Trel =
Telapsed
Niterations

(6)

The latter metrics is needed because the number of iterations may be affected
by the rate of record updating (“search anomaly”). It separates the speedup due
to changing the number of iterations and the parallelization.
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Fig. 3. Elapsed Time, min

Fig. 4. Average Time for One Task, min
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Fig. 5. Elapsed Time Decrease Rate

Fig. 6. Time for Task Decrease Rate
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As seen from the obtained graphs, both metrics decrease when the number
of machines grows. However, both graphs turn out to be far from linear as the
rate of metrics decrease dramatically falls after more than four machines are
involved. The major reason for this is that the number of tasks provided by
the server turns out to be less than the overall computational ability of clients,
which leads to the situation when a part of clients stay idle due to the lack of
workunits.

In order to relieve this issue, we tried to change the criterion of necessity
of new tasks so that the number of currently processing tasks would matter
as well, but it led to rise in iterations number of nearly 10% in average and,
therefore, to rise in elapsed time, so this strategy was rejected. We conclude
that this issue needs to be observed in a more computationally complicated
problem where the number of tasks would be considered as much greater than the
number of computational units. In case this effect repeats in such an experiment,
the strategy of distributing tasks between units should be corrected in a way,
otherwise it would be considered as normal behaviour of the system.

Another remarkable result is that trends for the overall number of performed
iterations do not match in two experiments. As it can be seen in the first graph
in Fig.1, there is a clear decreasing trend in the 6-dimensional case. It leads to
a superlinear speedup in elapsed time between 1 and 4 nodes. Surprisingly the
situation with 5-dimensional case is opposite. this issue needs further investiga-
tion.

Using the strategy that has been described before, we get the following de-
pendency: the sooner the current record value is updated, the less tasks would
need to be processed, and it means the decrease in the number of performed
iterations. As using multiple machines speeds up the process of updating record
values, the number of iterations is supposed to decrease along with the time
elapsed for the whole problem. However special efforts are needed to ensure fast
record propagation and to filter the jobs queue before sending to client nodes.

5 Future Work

Analysis of the achieved results showed that the implemented system proves its
efficiency. It should be noticed however that the experiments were conducted in a
homogeneous enterprise grid which is a simplified infrastructure w.r.t. large-scale
volunteer grid. Porting to a public volunteer grid will involve more experiments
and multiple modifications. In particular, public grids are rather heterogeneous
and have a very dynamic structure so considering these issues should be ac-
counted in workunit generation process.

It was noticed that despite subproblems aggregation, the running time may
still differ significantly for different tasks. Thus, an intelligent way of combining
subproblems in a workunit is required. This implies the necessity of some way
to predict the number of iterations for processing a subproblem.

In this paper, we tested our system using only unconstrained global optimiza-
tion problems. Thus, we plan to make series of experiments with other math-
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ematical problems, including different optimization benchmarks and problems
of different types, e.g. constrained and discrete problems. Obviously the type of
the problem can significantly affect the choice of the parallelization strategy. For
example, finding the solution of systems of inequalities by Branch-and-Bound
method [10] do not involve records exchange and thus can be viewed as a classi-
cal back-tracking. Conversely another popular approach to global optimization
— branch and cut method assumes passing “cuts” (cutting planes) between
processes [9] and thus can significantly increase the network overhead. The men-
tioned problems may require different load distribution strategies.

6 Conclusion

In this paper, we described a system implementing the Branch and Bound
method on a small enterprise grid based on the BOINC infrastructure. Tech-
niques to ensure uniform load distribution were proposed as well as subprob-
lems filtering before sending to working nodes. The series of experiments on two
benchmark problems were performed. The experimental results show that this
algorithm is rather efficient in terms of total execution time decrease.

The obtained results, however, demonstrate a dramatic drop in time decrease
after more than four machines are involved. As we suppose, it may be caused
by a lack of workunits for computational nodes, and this assumption should be
examined in a more complicated problem.
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