Generation of Multiple Turbulent Flow States for the Simulations With Ensemble Averaging

B. Krasnopolsky

krasnopolsky@imec.msu.ru

Institute of Mechanics, Lomonosov Moscow State University

Russian Supercomputing Days, September 24, 2018, Moscow, Russia

High-fidelity turbulent flow simulations assumes:

- Eddy-resolving methods (DNS / LES / DES)
- Huge computational grids (10⁶-10¹⁰-...)
- Long time integration to collect turbulent statistics (10⁴-... time steps)

Typical DNS / LES simulation

Overall simulation: $T = T_T + T_A$

*Evolution of integral velocity perturbations amplitude in a straight pipe 3/19

Parallelization in time

Ensemble averaging (1)

V. Makarashvili, E. Merzari, A. Obabko, A. Siegel, P. Fischer. A performance analysis of ensemble averaging for high fidelity turbulence simulations at the strong scaling limit // Computer Physics Communications, vol. 219, 2017, p. 236-245

- *m* independent runs
- Speedup due to increase of computational resources

Typical methods for modelling incompressible turbulent flows with eddy-resolving models:

High-order Runge-Kutta time integration schemes (one of substeps):

$$\begin{aligned} \frac{\mathbf{u}^* - \mathbf{u}^n}{\Delta t} &= -\left(\mathbf{u}^n \cdot \nabla\right) \mathbf{u}^n + \frac{1}{Re} \nabla^2 \mathbf{u}^n \\ \mathbf{u}^{n+1} &= \mathbf{u}^* - \Delta t \nabla p^{n+1} \\ \nabla^2 p^{n+1} &= \frac{1}{\Delta t} \nabla \cdot \mathbf{u}^* \end{aligned}$$

Krylov subspace & Multigrid methods for solving pressure Poisson equations

Time integration (2)

Typical methods for modelling incompressible turbulent flows with eddy-resolving models:

High-order Runge-Kutta time integration schemes (one of substeps):

$$\begin{aligned} \frac{\mathbf{U}^* - \mathbf{U}^n}{\Delta t} &= -\left(\mathbf{U}^n \cdot \nabla\right) \mathbf{U}^n + \frac{1}{Re} \nabla^2 \mathbf{U}^n \\ \mathbf{U}^{n+1} &= \mathbf{U}^* - \Delta t \nabla P^{n+1} \\ \nabla^2 P^{n+1} &= \frac{1}{\Delta t} \nabla \cdot \mathbf{U}^* \end{aligned}$$

Generalized» velocity & pressure:

 $\mathbf{U} = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m}$ $P = {p_1, p_2, \dots, p_m}$

Pressure Poisson equation with multiple right-hand sides

PPE with multiple RHSs

Basic aspects for Krylov subspace & Multigrid methods:

- Sparse matrix storage formats (e.g., CSR)
- Operations with vectors (linear operations, scalar products)
 - memory bound (e.g., STREAM benchmark)

Sparse Matrix-Vector multiplications (SpMV)

memory bound

Generalized SpMV with multiple RHSs allows to significantly increase the performance due to increase of the computational intensity (flop per byte ratio)

Ensemble averaging (2)

V. Makarashvili, E. Merzari, A. Obabko, A. Siegel, P. Fischer. A performance analysis of ensemble averaging for high fidelity turbulence simulations at the strong scaling limit // Computer Physics Communications, vol. 219, 2017, p. 236-245 *m* independent runs

Speedup due to increase of computational resources

B. Krasnopolsky. An approach for accelerating incompressible turbulent flow simulations based on simultaneous modelling of multiple ensembles // *Computer Physics Communications*, vol. 229, 2018, p. 8-19

Simultaneous modelling of **m** states in a single run

Speedup due to memory traffic reduction when solving pressure Poisson equation

Simulation speedup theoretical estimates (1)

$$P_m = \frac{1+\beta}{m+\beta} \frac{5m}{5m-3\theta(m-1)}$$

Three parameters:

$\beta = T_A/T_T$	Time intervals ratio; determined by the problem statement				
heta	SLAE solver time ratio; determined by the choice of the numerical methods used				
m	Number of simultaneously modelled flow states				

Simulation speedup theoretical estimates (2)

Simulation speedup as a function of a number of flow states:

 $\theta = 0.85$

Generation of multiple flow states

Introducing perturbations at the transition stage (T_B): $T_T - T_B \gtrsim T_{corr}$

Influence on the simulation speedup

	16	0.23	0.32	0.55	0.81	1.12	1.40	16	0.60	0.77	1.10	1.37	1.58	1.73
E	8	0.40	0.54	0.83	1.10	1.35	1.54	8	0.83	1.01	1.30	1.49	1.62	1.71
w states,	4	0.65	0.81	1.08	1.27	1.42	1.51	4	1.01	1.15	1.35	1.46	1.53	1.57
Flo	2	0.89	1.01	1.15	1.23	1.28	1.31	2	1.07	1.15	1.24	1.28	1.31	1.33
	1	1.00	1.00	1.00	1.00	1.00	1.00	1	1.00	1.00	1.00	1.00	1.00	1.00
		1	2	5 Times	10 ratio, β	20	40		1	2	5 Times	10 ratio, β	20	40

 $T_B = 0$

 $T_B/T_T = 0.75$

Computational codes

Software:

Linear solver for SLAEs with multiple RHSs: BiCGStab + Algebraic Multigrid (hybrid MPI + Posix Shared Memory programming model)

In-house code for Direct Numerical Simulation of turbulent flows, allowing simultaneous modelling of multiple flow states*

* N. Nikitin. Finite-difference method for incompressible Navier-Stokes equations in arbitrary orthogonal curvilinear coordinates // JCP, 217(2), 759-781, 2006.

Test problem

Flow in a channel with a matrix of wall-mounted cubes:

- No-slip bc at the channel and cube walls
 Periodic bc at lateral faces
 Reynolds number: $\operatorname{Re}_b = \frac{U_b h}{\nu} = 3854$
- Integration intervals: $T_T = 100$; $T_A = 2000$

	Grid 1	Grid 2	Grid 3		
Grid size	144 x 112 x 144	240 x 168 x 240	360 x 252 x 360		
Cube	52 x 38 x 52	100 x 74 x 100	150 x 120 x 150		
h_x, h_z	0.0065h - 0.054h	0.0031h - 0.038h	0.0024h - 0.023h		
h_y	0.0054h - 0.07h	0.003h - 0.044h	0.0023h - 0.03h		
Overall size	2.32 M	9.68 M	32.7 M		

Simulation results

Test case: Grid 1, 2.32 M cells

32 nodes, "Lomonosov-2" (448 cores)

Flow states, m	T_B / T_T	CPU time, min	Expected speedup	Actual speedup
1	-	1088	-	-
4	0	790	1.42	1.38
4	0.77	729	1.53	1.49
8	0.77	695	1.63	1.57

Cross-correlation for different flow states

Cross-correlation of the time series for the longitudinal velocity components of 4 flow states

The methodology of generation multiple uncorrelated turbulent flow states based on introducing perturbations during the transition stage has been investigated

- The performance gain theoretical estimate has been extended to cover the simulation scenario of interest
- Actual simulation speedup agrees with the proposed estimates
- The proposed methodology:
 - Extends the range of applicability for the ensemble averaging approach
 - Provides additional 20% simulation speedup

List of publications

B. Krasnopolsky. An approach for accelerating incompressible turbulent flow simulations based on simultaneous modelling of multiple ensembles // Computer Physics Communications, v. 229, 2018, p. 8–19.

B. Krasnopolsky. Optimal strategy for modelling turbulent flows with ensemble averaging on high performance computing systems // Lobachevskii Journal of Mathematics. v. 39 (4), 2018, p. 533–542.

B. Krasnopolsky. Generation of multiple turbulent flow states for the simulations with ensemble averaging // Supercomputing Frontiers and Innovations, v. 5 (2), 2018, p. 55–62.