
The multi-level adaptive approach for efficient
execution of multi-scale distributed applications

with dynamic workload

Denis Nasonov , Nikolay Butakov , Michael Melnik , Alexandr Visheratin,
Alexey Linev, Pavel Shvets , Sergey Sobolev , and Ksenia Mukhina

ITMO University

2018

Introduction

The performance increase of SC is also associated with the growing complexity of the CS architecture. It
leads to the following challenges:

1. the need to use multi-scale and multi-physical models, various modelling methods (grid and
drains) in the solution of one applied problem;

2. the use of specialized computation resources (for example, graphics processing units);

2. the problem of balanced spatial decomposition due to the complexity of the geometry of the
domain of definition;

3. dynamic change in the complexity of different parts of the problem: with spatial decomposition
due to the change in the geometry of the system or due to the emergence of areas of high
computational complexity (for example, clustering of agents in multi-agent systems, slow
convergence regions for grid methods;

4. the development of cloud computing technologies, in which the SС architecture is hidden from
the user, and the need to meet their requirements.

5. etc.

3

3 main levels are supposed:

• Model logic execution layer –

implements the internal behavior of
the model and has no connection to
infrastructure part

• Execution environment – is a middle
layer that allows model and
infrastructure to communicate with
each other through space model and
computation distributed agents

• Infrastructure container – contains
scheduling algorithm that manage
application node workload changing
simulation space

•

Codesign-oriented execution approach

Problem statement

5 Scheduling algorithm implementation

Chromosome

MB1 MB2 MB3

R1 R2

MB4 MB5 MB_M

R3

Workload

Wait start of iteration

Statistics Resources

Check if previous plan can be applied
Yes

Apply plan on the

next iteration

Generate new population <MB, R>

Generate population

by Greedy heuristic

Generate population

by QuadTree

No

Adapt previous

population

Apply crossover Apply mutation

Fitness function

estimation
Plan section GA Plans

Plan Execution

Is new plan better?
Yes

We use genetic algorithm (GA) to optimize
distribution of model workload:
The parameters of the algorithm:
• size of population – 100;
• count of generations – 300;
• mutation probability - 0.7;
• crossover probability - 0.3;
• selection operator - roulette wheel.

6 CitySimulator multiscale application

The goal of City-Simulator is to simulate urban mobility of the population with in multiscale
city model. Here we have 3 scales: city, district (urban infrastructure) and agents, that can
interact with each other and allow different urban scenarios. Because of high CPU
consumption this application should be executed on supercomputer.

7 CitySimulator event detection

Convolutional quadtree – enhanced quadtree that
considers spatial data distribution

Adaptive geogrid – representation of the urban area
state by workload

Fast and efficient detection
of events of various scales –
from very local (indie band
concert) to city (holiday
march) and even country
scale (political protest)

8 Codesign-oriented execution approach

• 6 million agents to produce simulations on
a city scale both regarding the size of the
calculation area and regarding the size of
the population of agents.

• The application was planned for 100, 200,
500 and 1000 cores.

• Agents move in the space forming different density in the
space splitted between resources

• Workload are non-uniform: low on some nodes, and high
on others

• Rebalancing by provided schedulers allows to reduce the
execution time

Increased performance results:
• up to 32% in case of 200 cores,
• up to 18% in case of 500 cores

9 Adaptation to the infrastructure

• Example of workload on the most “busy” nodes and on the most “empty” nodes

• For adaptive schema, the algorithm tries to decrease dispersion among all execution nodes and

through the whole execution time (for busy case we have 3500 and 5000 max values). It means that
high-loaded nodes share their workload with low-loaded nodes

10 Conclusion and future plans

• The experimental case study demonstrated an improvement in
execution time with the growth of exploited cores for:
• up to 32% in case of 200 cores,
• up to 18% in case of 500 cores thus showing that the proposed

approach is able to deliver.
• Significant improvement in efficiency of scaling for distributed

applications.

Plans:
• Adaptation for more complex one-model scenario
• Extension for cooperation of several models together

11 Restenosis application

• This multiscale model includes two single-scale models: blood flow dynamics and vascular wall growth,
acting in the same domain

• As the growth progresses, the load of these two models changes: the amount of wall elements increases,
and the flow area shrinks

Thank you for your attention!
Q&A?

www.ifmo.ru

