Parallel block-diagonal preconditioner with projectors for diffusion equation

Vasily Kramarenko¹ Yuri Kuznetsov² Igor Konshin^{1,3}

¹Marchuk Institute of Numerical Mathematics of Russian Academy of Science

²University of Houston

³Dorodnicyn Computing Centre of FRC CSC RAS

24 September, 2018

- problem formulation
- Ø discretization
- opreconditioner construction
- opreconditioning process
- omparison results

Classical 2nd order equation

$$\begin{aligned} -\nabla \left(D\nabla p \right) &= f & \text{in } \Omega, \\ p &= p_0 & \text{on } \partial\Omega, \end{aligned}$$

 $D = d_0 I$ in Ω .

In area $\Omega\ m$ subareas are selected. These subareas corresponds to inclusions.

$$\partial \omega_s \cap \partial \omega_t = \emptyset$$
, $\partial \omega_s \cap \partial \Omega = \emptyset$, $s, t = 1, \dots, m$.
In inclusions define diffusion coefficient $d_s, d_s \gg d_0$

Example of Ω with inclusions

Figure: Area Ω with inclusions

For discretization P1 finite element method is used. In inclusion

$$A_s = d_s A_{\lambda,s} = A_{\lambda,s} + (d_s - d_0) A_{\lambda,s}$$

As a result matrix $A\overline{p}=\overline{g}$ is a sum

 $A = A_0 + A_1$

where A_0 is matrix "without" inclusions and

$$A_1 = \sum_{s=1}^{m} (d_s - 1) N_s A_{\lambda,s} N_s^T,$$
 (1)

Consider generalized eigenvalue problem

$$A_t \overline{w} = \lambda M_t \overline{w}$$

where $0 = \lambda_{t,1} < \lambda_{t,2} \leq \ldots \leq \lambda_{t,m_t}$ are eigenvalues, M_t is mass matrix.

We can construct decomposition.

$$A_t = M_t W_t \Lambda_t W_t^T M_t$$

where $\Lambda_t = diag\{\lambda_{t,1}, \lambda_{t,2}, \dots, \lambda_{t,m_t}\}$ and $W_t = [\overline{w}_{t,1}, \dots, \overline{w}_{t,m_t}]$, If we consider diffusion matrix from our case $\lambda_{t,1} = 0$, $\overline{w}_{t,1} = \frac{1}{\|\overline{e}_t\|}_{M_t} \overline{e}_t$

Preconditioner Construstion

Consider the preconditioner, based on following idea. For each subdomain

$$B_t = \alpha_t M_t W_t \left(I_t - \hat{I}_t \right) W_t^T M_t$$

where

$$\hat{I}_t = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & & & & \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Remark:

$$W_t^T M_t W_t = M_t W_t W_t^T = W_t W_t^T M_t = I_t$$

After using this trick

$$B_t = \alpha_t \left(M_t - M_t \overline{w}_{t,1} \overline{w}_{t,1}^T M_t \right)$$

Kuznetsov Y., Kramarenko V., Preconditioners with projectors for mixed hybrid finite element methods // Russian Journal of Numerical Analysis and Mathematical Modelling, Vol. 32 (2017), No. 1, P. 39–45. DOI: 10.1515/rnam-2017-0004.

If $A_1 = \sum\limits_{t=1}^m N_t A_t N_t^T$ we will construct preconditioner for second part of A

$$B_1 = \sum_{t=1}^m N_t B_t N_t^T$$

where $\alpha_t = (d_t - d_0) || M_t^{-1} A_t ||$. For other part of matrix we use diagonal preconditioner

$$B_0 = \alpha_0 M_0$$

where $\alpha_0 = ||M^{-1}A_0||$ and as a result

$$B = B_0 + B_1$$

Preconditioning process (Coarse mesh system)

In ours case

$$B = \sum_{t} \alpha_{t} N_{t} \left(M_{t} - M_{t} \overline{w}_{t,1} \overline{w}_{t,1}^{T} M_{t} \right) N_{t}^{T} + B_{0}$$
$$B = M - \sum_{t} \alpha_{t} N_{t} M_{t} \overline{w}_{t,1} \overline{w}_{t,1}^{T} M_{t} N_{t}^{T}$$

Consider Bv = g

$$Mv - \sum_{t} \alpha_t N_t M_t \overline{w}_{t,1} \overline{w}_{t,1}^T M_t N_t^T v = g$$

or

$$v - \sum_{t} \alpha_t M^{-1} N_t M_t \overline{w}_{t,1} \overline{w}_{t,1}^T M_t N_t^T v = M^{-1} g$$

Preconditioning process (Solving Coarse mesh system) (2)

Let
$$\xi_t = \overline{w}_{t,1}^T M_t N_t^T v$$

 $v - \sum_t \alpha_t M^{-1} N_t M_t \overline{w}_{t,1} \xi_t = M^{-1} g$

For calculation ξ_t we should solve system $(I-Q)\overline{\xi}_t = \hat{g}$, where $Q = \{q_{ij}\}, \ \hat{g} = \{\hat{g}\}$

$$q_{ij} = \overline{w}_{t,1}^T M_t N_t^T \alpha_t M^{-1} N_t M_t \overline{w}_{t,1}$$
$$\hat{g}_t = \overline{w}_{t,1}^T M_t N_t^T g$$

For our case Q is a diagonal matrix

Test case

We consider unit square with regular mesh

with zero Dirichlet boundary conditions.

The BiCGStab method is used for solving system. For preconditioning four methods are used

• ILU
$$(k)$$
 $k = 7$ (from PETSc)

- AMG (from Trilinos)
- ILU2(τ) $\tau = 10^{-3}$ (from INMOST)
- BDP

preconditioner		#iter	Time	T_{it}
PETSc ILU(7)	$d_s = 10^4$	125	0.99	0.00792
Trilinos AMG		122	1.66	0.01360
INMOST ILU2 (10^{-3})		131	1.93	0.01581
BDP		544	2.16	0.00397
PETSc ILU(7)	$d_s \in [1; 10^4]$	126	0.99	0.00785
Trilinos AMG		85	1.15	0.01352
INMOST ILU2 (10^{-3})		86	1.80	0.02093
BDP		644	2.43	0.00377
PETSc ILU(7)	$d_s = 10^6$	120	0.94	0.00783
Trilinos AMG		750	9.71	0.01294
INMOST ILU2 (10^{-3})		279	2.42	0.00867
BDP		528	1.98	0.00375
PETSc ILU(7)	$d_s \in [1; 10^6]$	134	1.04	0.00776
Trilinos AMG		551	7.14	0.01295
INMOST ILU2 (10^{-3})		133	1.99	0.01496
BDP		472	1.77	0.00375

Table: Preconditioners comparison. Inclusions number $m = 64 \times 64$, inclusion size $n = 4 \times 4$, matrix size $N_A = 261121$.

Comparison results

preconditioner		#iter	Time	T_{it}
PETSc ILU(7)	$d_s = 10^4$	206	6.34	0.030777
Trilinos AMG		146	11.26	0.07712
INMOST ILU2 (10^{-3})		242	11.08	0.04578
BDP		1122	17.53	0.01562
PETSc ILU(7)	$d_s \in [1; 10^4]$	218	6.71	0.03082
Trilinos AMG		111	8.57	0.07720
INMOST ILU2 (10^{-3})		149	10.78	0.07234
BDP		1445	21.92	0.01516
PETSc ILU(7)	$d_s = 10^6$	205	6.37	0.03107
Trilinos AMG		663	50.04	0.07547
INMOST ILU2 (10^{-3})		338	10.98	0.03248
BDP		866	13.13	0.01516
PETSc ILU(7)	$d_s \in [1; 10^6]$	183	5.71	0.03120
Trilinos AMG		891	67.93	0.07624
INMOST ILU2 (10^{-3})		355	19.45	0.05478
BDP		1336	20.48	0.01532

Table: Preconditioners comparison. Inclusions number $m = 128 \times 128$, inclusion size $n = 4 \times 4$, matrix size $N_A = 1046529$.

Comparison results

preconditioner		#iter	Time	T_{it}
PETSc ILU(7)	$d_s = 10^4$	565	17.10	0.03026
Trilinos AMG		88	6.87	0.07806
INMOST ILU2 (10^{-3})		191	11.56	0.06052
BDP		1016	15.00	0.01476
PETSc ILU(7)	$d_s \in [1; 10^4]$	1177	35.2	0.029905
Trilinos AMG		71	5.58	0.07859
INMOST ILU2 (10^{-3})		126	10.49	0.08325 0
BDP		1262	18.97	0.01503
PETSc ILU(7)	$d_s = 10^6$	1982	59.12	0.02982
Trilinos AMG		483	36.63	0.07583
INMOST ILU2 (10^{-3})		1094	53.49	0.04889
BDP		966	14.10	0.01459
PETSc ILU(7)	$d_s \in [1; 10^6]$	1223	36.63	0.02995
Trilinos AMG		513	39.08	0.07617
INMOST ILU2(10^{-3})		299	21.29	0.07120
BDP		1152	17.15	0.01488

Table: Preconditioners comparison. Inclusions number $m = 64 \times 64$, inclusion size $n = 8 \times 8$, matrix size $N_A = 1046529$.

Comparison results

preconditioner		#iter	Time	T_{it}
PETSc ILU(7)	$d_s = 10^4$	3641	449.99	0.12358
Trilinos AMG		92	34.41	0.37402
INMOST ILU2 (10^{-3})		322	74.85	0.2324
BDP		2609	165.9	0.06358
PETSc ILU(7)	$d_s \in [1; 10^4]$	1517	189.21	0.12472
Trilinos AMG		76	28.57	0.37592
INMOST ILU2 (10^{-3})		206	63.98	0.31058
BDP		2996	192.85	0.06436
PETSc ILU(7)	$d_s = 10^6$	3996	495.52	0.12400
Trilinos AMG		518	189.17	0.36519
INMOST ILU2 (10^{-3})		1441	278.21	0.19306
BDP		1839	117.47	0.06387
PETSc ILU(7)	$d_s \in [1; 10^6]$	3871	368.87	0.09529
Trilinos AMG		544	105.23	0.19343
INMOST ILU2 (10^{-3})		492	80.80	0.16422
BDP		2539	76.18	0.0300

Table: Preconditioners comparison. Inclusion number $m = 128 \times 128$, inclusion size $n = 8 \times 8$, matrix size $N_A = 4190209$.

	Nproc	1	2	4	8	16	32	64
PETSc ILU(7)	#iter	10000	10000	10000	10000	10000	4383	10000
	Time	1137.28	536.83	301.08	198.38	190.04	42.83	56.99
	Accur.	2.0e-09	6.0e-10	5.0e-02	2.0e-09	4.0e-10	1.0e-09	3.0e-09
	#iter	635	647	455	570	626	673	497
Trilinos AMG	Time	5258.48	137.10	50.32	36.36	30.63	15.04	5.59
	S_1	1.0	1.88	5.13	7.05	8.43	17.18	46.23
	#iter	183	259	288	262	346	370	305
INMOST ILU2 (10^{-3})	Time	75.52	53.24	32.68	16.92	16.7	10.2	4.87
. ,	S_1	1.0	1.41	2.31	4.46	4.52	7.40	15.50
	#iter	1848	1343	1219	1375	1527	1579	1608
BDP	Time	138.89	50.62	24.87	16.42	15.66	8.5	4.92
	S_1	1.0	2.74	5.58	8.45	8.86	16.34	28.22

Table: Dependence of velocity convergence from processors number $d_s \in [1; 10^6]$, $m = 64, n = 8, N_A = 1046529$.

	Nproc	1	2	4	8	16	32	64
PETSc ILU(7)	#iter	1248	2046	2173	1767	1337	1629	2476
	Time	147.04	115.13	65.94	35.25	25.55	16	14.75
	S_1	1.0	1.27	2.22	4.17	5.75	9.19	9.96
	#iter	116	128	117	133	117	112	114
Trilinos AMG	Time	48.85	27.89	13.36	8.71	5.82	2.59	1.49
	S_1	1.0	1.75	3.65	5.60	8.39	18.86	32.78
	#iter	156	208	226	200	206	217	237
INMOST ILU2 (10^{-3})	Time	53,09	35.51	20.35	10.51	8.20	4.86	3.12
	S_1	1.0	1.49	2.60	5.05	6.47	10.92	17.01
BDP	#iter	1643	2022	1544	1341	1556	1482	1295
	Time	123.45	75.46	30.93	16.06	15.48	7.93	4.03
	S_1	1.0	1.63	3.99	7.69	7.97	15.56	30.63

Table: Dependence of velocity convergence from processors number $d_s = 10^4$, $m = 64, n = 8, N_A = 1046529$.