

Extremely High-order Optimized Multioperatorsbased Schemes and Their Applications to Flow Instabilities and Sound Radiation

A. I. Tolstykh , M.V. Lipavskii, D. A. Shirobokov , E. N. Chigerev

Dorodnicyn Computing Centre, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences DNS of multiscale transient problems: how to get accurate solutions with realistic numbers of grid points (generally, DOF)?

For required accuracy:

(1) Use efficient parallel codes low-order methods

(2) Decrease DOF by using high-order methods

3D unsteady CFD: n times DOF decrease for x,y,z \rightarrow n^4 decrease in operation count

(3) Use parallel codes for high-order methods

Present talk: use very high-order with (3)

General idea of constructing arbitrary-order accurate multioperators formulae (Tolstykh, 1997, Parallel CFD, Manchester) Some papers: Tolstykh, JCP(2007,2008), Commun.in Comp.Phys.(2017) А.И.Толстых Компактные и мультиоператорные аппроксимации высокой точности для уравнений в частных производных, М. Наука, 2015

Consider compact approximation

$$L_m(c)f_j = Lf\Big|_j + O(h^m)$$

Let $c_1, c_2, K c_M$ be fixed values defining basis operators

$$L_m(c_1), L_m(c_2), K L_m(c_M)$$

Multioperator is

$$L_M(c_1, c_2, K c_M) = \sum_{k=1}^M \gamma_k L_m(c_k), \quad \sum_{i=1}^M \gamma_i = 1$$

where γ_k satisfy a linear system which equations kill (M-1) low-order terms of the truncation error. The solvability can be proved or verified. It gives

$$Lf\Big|_{j} = L_{M}f_{j} + O(h^{M+m-1})$$

Existence and example of construction

• The solvability of the linear system and hence existence and uniqueness can be proved if basis operators are compact approximations to target one

• Consider approximate formula
$$[Lu]_j \approx L_h[u]_j = \sum_k c_k u_{j+k}$$

• Introduce operator $A_h = I + cB_h$, $B_h = O(h)$ или $B_h = O(h^2)$

Form superposition $\overline{L_h}(c) = A_h^{-1}(c)L_h$

Fix $c_1, c_2, \mathbf{K} c_M$, solve for $\gamma_1, \gamma_2, \mathbf{K} \gamma_M$, obtain $L_M(c_1, c_2, \mathbf{K} c_M) = \sum_{i=1}^M \gamma_i \overline{L}_h(c_i)$

Parameters $c_1, c_2, K c_M$ can be used to control the properties

Multioperators for fluid dynamics.

Recent version of basis operators with two-point inversions.

Very high orders, presently up to 36! (Tolstykh, Commun. In Comp. Phys.,2017)

Approximate
$$Lf_j = \left(\frac{\partial f}{\partial x}\right)_j$$
 by left and right operators

 $L_l f_j = R_l(c)^{-1}(f_j - f_{j-1}), L_l > 0$ and $L_r f_j = R_r(c)^{-1}(f_{j+1} - f_j), L_r < 0$

where
$$R_{l}u_{j} = (1-c)u_{j} - cu_{j-1}$$
 and $R_{r}u_{j} = (1-c)u_{j} - cu_{j+1}$

Skew-symmetric, approximate derivatives

 $L_0(c) = \frac{1}{2} \left(L_l(c) + L_r(c) \right) = L + O(h^2) \implies L_M(c_1, K, c_M) = \sum_{k=1}^M \gamma_k L_0(c_k) f_j = (Lf)_j + O(h^{2M})$

Self-adjoint positive, for dissipation

$$D(c) = \frac{1}{2} (L_l(c) - L_r(c)) = O(h) \longrightarrow D_M(c_1, K, c_M) = \sum_{k=1}^M \gamma_k D(c_k) = O(h^{2M-1})$$

Phase & Amplitude Errors of 16th & 32nd - order schemes with two-diagonal inversions

$$u_t + au_x = 0, \ u(0, x) = e^{ikx}$$

 $u(t, x) = e^{ik(x-at)}$
 $u_t + aL_M u/h = 0$
 $u(t, x_j) = e^{-dt}e^{ik(x-a^*t)}$

Phase error
$$e(kh) = (a - a^*(kh; c_1, K c_M))/a$$

Architecture of multioperarors-based schemes

$$\partial u / \partial t + \partial f(u) / \partial x = 0$$

• Multioperators: specify M. Use preliminary analysis to specify

 $c_1, c_2, \mathrm{K} \; c_M^{}$ and $c_1^\prime, c_2^\prime, \mathrm{K} \; c_M^\prime$, create multioperators

- $L_M(c_1, c_2, \mathbf{K} c_M)$ and $D_M(c_1', c_2', \mathbf{K} c_M')$
- Conservative scheme (can be put in the form of flux balances) $c'_i = c_i$

$$\partial u / \partial t + L_M f(u) + a D_M u = 0, \quad a = const \ge 0$$

Dissipation-free approximation to the derivative High-order dissipation Multidimensional problems: use multioperators for each spatial coordinate N-S equations: use any type operators for viscous terms

Example: smooth solution of the Hopf equation

$$u_t + (u^2/2)_x = 0, \ u(0,x) = 0.5 + \sin \pi x, \ -1 \le x \le 1$$

10th (M=4) & 16th(M=8) order schemes with two-diagonal inversions, C-norm of the solutions errors

	WENO-5		10 th (order	16 th order	
Ν	error	order	error	order	error	order
16	1.3e-2		1.3e-3		1.3e-3	
32	1.2e-3	3.4	6.6e-6	7.7	8.5e-6	7.3
64	9.5e-5	3.7	5.4e-9	10.3	1.3e-9	12.6
128	3.3e-6	4.8	4.9e-12	10.1	3.7e-14	15.1
256	8.7e-8	5.3	8.1e-14	5.9		

Benchmark problem (C. Tam), 32nd- order scheme with near-optimal values of C_i parameters

$$u_t + u_x = 0$$
, $u(0, x) = [2 + \cos \beta x] \exp[(-\ln 2)(x/10)^2]$
 $h = 1$, required $\beta = 1.7$, $t = 800$

С

Time needed to preserve 10% accuracy vs. wave number

 $\beta = 2.2$ t = 15000

Example of CFD parallel implementation. Left sweeps in x-

direction $u_i = a(c_i)u_{i-1} + b(c_i), j = 1, 2, ..., N$

Partition [O, x_N] into $[x_{m-1}, x_m]$, m=1,2,K,N

Execution times per time step in 3D case (jets) mesh 360x100x100 Lomonosov sup.comp.

Number of proc.	8	27	64	125	216	360	1000
Distrib. Along axes	2x2x2	3x3x3	4x4x4	5x5x5	6x6x6	6x10x6	10x10x10
Time per time step,sec.	113	27.45	6.34	3.99	2.81	2.81	1.70
Accelerati on	1	4.12	8.94	17.8	28.3	40.3	66.5

Target problems

- (I). Steady state problems (smooth meshes are required) We are interested in:
- (II) Unsteady problems requiring long-time integrations with preserving high resolution of small scales
- Aeroacoustics DNS (instability with sound radiation)
- DNS of turbulence, laminar-turbulent transition
- 3D unstable vortex wakes generated by landing large aircrafts
- Atmospheric phenomena (e.g., tornado)
- Many others

Using high-order multioperators –based schemes, it is possible to catch fine details of flows using the Navier-Stokes equations with modest meshes Direct simulation of unstable subsonic hot axisymmetric jets: getting fine details

- Unsteady Navier-Stokes equations
- 10th-16th order multioperators schemes detect
- Fine details of vortex rings formation, their interactions and break down,

describe

Sound radiation and its origin

Cold jet. Axisymmetric formulation. M=0.5

3d view of the vorticity field (fragment)

3D hot jet , M=0.1 $T/T_{\infty} = 2.5$ Abs. values of vorticity, 4<x<30.

Azimuthally modes spoil vortex rings

Spectra examples

$$d = 20R, \ \alpha = 10^{\circ}$$

$$d = 20R, \ \alpha = 40^{\circ}$$

Instability of Rankine vortex in compressible gas with sound radiation

- Vorticity: $\Omega = const, r \le R, \quad \Omega = 0, r > R$ $M = \frac{\Omega R}{2c_{\infty}}$
- Incompressible case: the velocity field is exact solution which is stable in respect to small perturbations
- Compressible case: the velocity field is exact solution but it is unstable
- The problem: numerical simulation of the instability scenario using the Euler equations

Time history of pressure pulsations at R=20, M=0.3

Snapshots of acoustic pressure fields near the vortex boundary. Phase I.

T=700

T=1380

T=2500

Phase II

Using Immersed Boundaries Method. Test: flow about cylinder, small Re, M=0.2

Length of separ. zone

IBM. Test: flow about cylinder, Re>40, M=0.2

Re=100

 $Re = 10^8$

Calculations for supersonic flows (M<1.5) are possible due to conservative property of multioperators-based schemes

 The schemes can deal with shock-capturing calculations. Example: underexpanded supersonic jets. Screech effect (upwind propagations of acoustic waves).

Underexpanded jet, M=1.5. Screech effect. Schlieren visualization (abs of density gradients) of the flow field

Flows with strong shocks and contacts. Hybrid multioperators schemes.

 Main idea: to get monotone solutions near shocks and contacts regions and high-order ones away from those regions.

• Tools:

- -- Using flux corrections (Zalesac, J.Comp.Phys, 1979) and/or
- -- Blending high-order and monotone schemes

(I.B.Petrov, A.S.Kholodov, Comput. Math. Math. Phys., 1984;

M. N. Mikhailovskaya , B. V. Rogov, Comput. Math. Math. Phys., 2012)

High Mach numbers, 16th-order hybrid Riemann problems

Conclusions

- Using the multioperators approach, it is possible to create desired-order approximations for numerical analysis formulae
- 10 th –32th order multioperators-based optimized schemes for fluid dynamics were constructed
- Extremely high accuracy and high resolution was demonstrated using benchmark problems
- The potential for efficient massively parallel calculations does exist
- High fidelity direct NS and Euler calculations of sound generation due to flow instabilities were carried out
- The schemes can deal with shock-capturing calculations
- Hybrid schemes can be used in the case of strong shocks and hypersonic flows

Thank you