

Comparison of Dimensionality Reduction Schemes for Parallel Global Optimization Algorithms

Konstantin Barkalov, Vladislav Sovrasov and Ilya Lebedev

Lobachevsky State University of Nizhni Novgorod

25 September 2018 Moscow, Russia

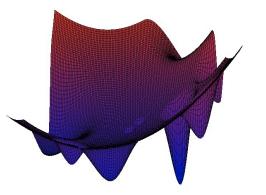
Problem statement

$$\begin{split} \varphi(y^*) &= \min\{\varphi(y): y \in D\},\\ D &= \{y \in \mathbb{R}^N: a_i \leq y_i \leq b_i, 1 \leq i \leq N\} \end{split}$$

 $\varphi(y)$ is multiextremal objective function, which satisfies the Lipschitz condition:

$$|\varphi(y_1)-\varphi(y_2)| \leq L \|y_1-y_2\|, y_1, y_2 \in D,$$

where L > 0 is the Lipschitz constant, and $|| \cdot ||$ denotes l_2 norm in \mathbb{R}^N space.

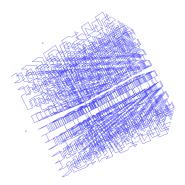


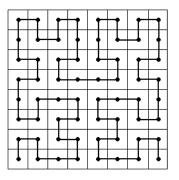
Dimension reduction

Peano-type curve y(x) allows to reduce the dimension of the original problem:

$$\begin{split} & \{y \in \mathbb{R}^N : -2^{-1} \leqslant y_i \leqslant 2^{-1}, 1 \leqslant i \leqslant N\} = \{y(x) : 0 \leqslant x \leqslant 1\} \\ & \min\{\varphi(y) : y \in D\} = \min\{\varphi(y(x)) : x \in [0, 1]\} \end{split}$$

y(x) is non-smooth function which continuously maps the segment [0,1] to the hypercube D.

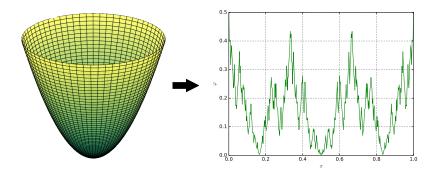




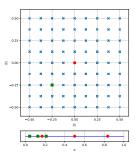
After applying the Peano-type evolvent $\varphi(y(x))$ satisfies the uniform Hölder condition:

$$|\varphi(y(x_1))-\varphi(y(x_2))|\leq H|x_1-x_2|^{\frac{1}{N}}, x_1,x_2\in[0,1],$$

 $\varphi(y(x))$ is non-smooth and has multiple local and **global** extremums even if $\varphi(y)$ is unimodal. The latter problem is caused by loss of the information about N-d neighborhood after the transformation to the 1-d space.



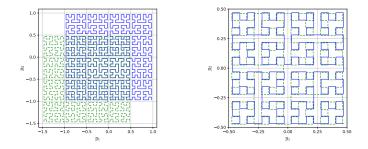
One can try to recover all preimages of $y \in \mathbb{R}^N$ and make optimization method aware of their existence¹. This allows reducing the effect of growing amount of local minimas after dimension reduction. According to the theory of Peano-type curves, each N-d point could have up to 2^N preimages. For large N such preimages mining would be expensive.



¹R.G. Strongin. Numerical Methods in Multiextremal Problems (in Russian), 1978

Shifted and rotated evolvents

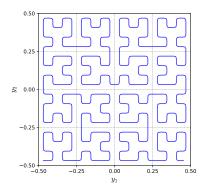
To create a fixed amount of preimages one can use a pre-defined set of different evolvents. These evolvents could be shifted or rotated versions of the original one. Set of shifted evolvents² is theoretically proven to generate at least one pair of close preimages if their images are close and it performs better than the a set of rotated curves in that sense.



²Strongin, R.G. Algorithms for multi-extremal mathematical programming problems employing the set of joint space-filling curves, Journal of Global Optimization 2(4), 357–378, 1992

Smooth evolvent

Smooth functions are more predictable for optimizer, so smooth approximation of the Peano-like y(x) curve could improve convergence rate ³.



 $^{^3\}mbox{Goryachih},$ A. A class of smooth modification of space-filling curves for global optimization problems, NET 2016

Optimization method generates search sequence $\{x_k\}$ and consists of the following steps:

- Step 1. Sort the search information (one-dimensional points) in increasing order.
- Step 2. For each interval (x_{i-1}, x_i) compute quantity R(i), called characteristic.
- Step 3. Choose p intervals (x_{t_j-1}, x_{t_j}) with the greatest characteristics and compute objective $\varphi(y(x^{k+j}))$ in points chosen using the decision rule d:

$$x^{k+1+j}=d(t)\in(x_{t_j-1},x_{t_j}),\ j=\overline{1,p}$$

Step 4. If $x_{t_i} - x_{t_i-1} < \varepsilon$ for one of $j = \overline{1, p}$, stop the method.

Detailed description: Strongin R.G., Sergeyev Ya.D.: Global optimization with non-convex constraints. Sequential and parallel algorithms (2000), Chapter 7 Using the multiple mapping allows solving initial problem by parallel solving the problems

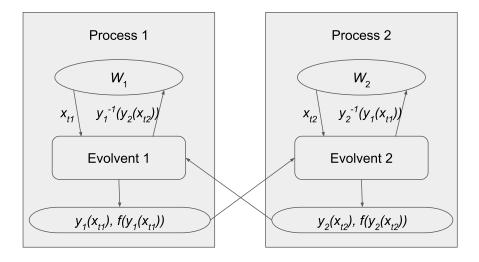
$$\min\{\varphi(y^s(x)): x\in[0,1]\}, 1\leqslant s\leqslant S$$

on a set of intervals [0,1] by the basic method. Each one-dimensional problem is solved on a separate processor. The trial results at the point x^k obtained for the problem being solved by particular processor are interpreted as the results of the trials in the rest problems (in the corresponding points x^{k_1},\ldots,x^{k_S}). In this approach, a trial at the point $x^k \in [0,1]$ executed in the framework of the s-th problem, consists in the following sequence of operations:

- Step 1. Determine the image $y^k = y^s(x^k)$ for the evolvent $y^s(x)$.
- Step 2. Inform the rest of processors about the start of the trial execution at the point y^k (the blocking of the point y^k).
- Step 3. Determine the preimages $x^{k_s} \in [0, 1], 1 \leq s \leq S$, of the point y^k and interpret the trial executed at the point $y^k \in D$ as the execution of the trials in the S points x^{k_1}, \ldots, x^{k_s}

Step 4. Inform the rest of processors about the trial results at the point y^k .

Parallel optimization method with multiple evolvents

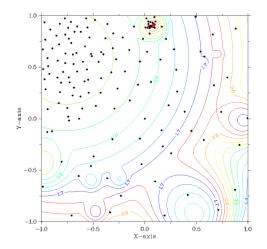


Generator GKLS was employed to construct the sets of test problems:

$$f(x) = \begin{cases} C_i(x), x \in S_i, i \in 2, \dots, m \\ \|x - T\|^2 + t, x \notin S_2, \dots, S_m \end{cases}$$

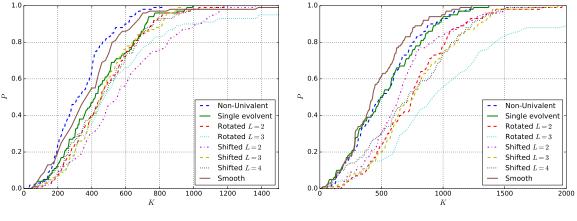
The generator allows to adjust:

- the number of local minimas;
- the size of the global minima attraction region;
- the space dimension.



The computational experiments have been carried out on the Lobachevsky supercomputer at State University of Nizhni Novgorod. One node includes 2 Intel Sandy Bridge E5-2660 2.2 GHz processors and 64 GB RAM. Each node runs under CentOS 7 Linux with GCC 4.8 compiler and Intel MPI library.

Evolvents comparison

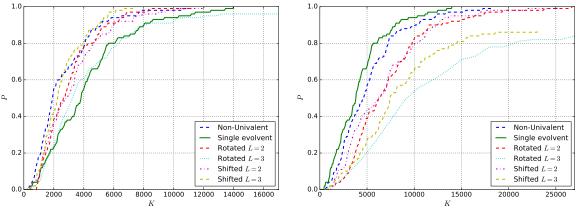


 $\mathsf{Minimal}\ r$

r = 5.0

Operating characteristics on GKLS 2d Simple class

Evolvents comparison



 $\mathsf{Minimal}\ r$

r = 4.5

Operating characteristics on GKLS 3d Simple class

Choice of evolvent for the parallel algorithm

- Smooth evolvent is too computational heavy.
- ▶ Non-univalent evolvent generates large and unpredictable amount of preimages.
- Shifted evolvent generates huge amount of auxiliary points to handle additional constraint.

Table: Averaged number of computations of g_0 and of φ when solving the problems from GKLS 3d Simple class using the shifted evolvent

L	$calc(g_0)$	$calc(\varphi)$	$rac{calc(g_0)}{calc(\varphi)}$ ratio
	96247.9		
3	153131.0	7702.82	19.88

Table: Averaged numbers of iterations executed by the parallel algorithm for solving the test optimization problems

		р	N = 4		N = 5	
			Simple	Hard	Simple	Hard
Ι	1 cluster node	1	12167	25635	20979	187353
		32	328	1268	898	12208
Ш	4 cluster nodes	1	25312	11103	1472	17009
		32	64	913	47	345
	8 cluster nodes	1	810	4351	868	5697
		32	34	112	35	868

Table: Speedup of parallel computations executed by the parallel algorithm

		р	N = 4		N = 5			
		-	Simple	Hard	Simple	Hard		
Ι	1 cluster node	1	12167(10.58s)	25635(22.26s)	20979(22.78s)	187353(205.83s)		
		32	37.1(18.03)	20.2(8.55)	23.3(8.77)	15.4(9.68)		
II	4 cluster nodes	1 32	0.5(0.33) 190.1(9.59)	2.3(0.86) 28.1(1.08)	14.3(6.61) 446.4(19.79)	11.0(6.06) 543.0(43.60)		
	8 cluster nodes	1 32	15.0(6.05) 357.9(2.36)	5.9(2.36) 228.9(2.64)	24.2(17.56) 582.8(20.96)	32.9(24.87) 793.0(33.89)		

Conclusions

- The smooth evolvent and the non-univalent one demonstrate the best result in the problems of small dimensionality and can be applied successfully in solving the problems with the computational costly objective functions.
- The shifted evolvents introduce large overhead costs on the execution of the method due to the requirement to adding an auxiliary constraint. About 95% of iterations are overhead to fight the auxiliary constraint.
- Rotated evolvents perform almost the same as the shifted ones but without overhead.
- Parallel optimization method shows up to 43x speedup on hard 5d problems when using a set of rotated evolvents.

Contacts:

sovrasov.vlad@gmail.com https://github.com/sovrasov