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Abstract. We present a parallelization strategy for our novel iterative method to 

simulate elastic waves in 3D land inhomogeneous isotropic media via MPI and 

OpenMP. The unique features of the solver are the preconditioner developed to 

assure fast convergence of the Krylov-type iteration method at low time frequen-

cies and the way to calculate how the forward modeling operator acts on a vector. 

We successfully benchmark the accuracy of our solver against the exact solution 

and compare it to another iterative solver. The quality of the parallelization is 

justified by weak and strong scaling analysis. Our modification allows simulation 

in big models including a modified 2.5D Marmousi model comprising 90 million 

cells.  

Keywords: Elastic equation · MPI · OpenMP · Preconditioner · Krylov itera-

tions 

1 Introduction 

Advances in supercomputing technology make it feasible to solve big data problems. 

Large simulations seemed impossible in the recent past but have become commonplace 

today. In geosciences, supercomputers have been opening new horizons for understand-

ing subsurface structures by allowing 3D imaging and velocity model estimation at high 

fidelity for fine-scale reservoir characterization. To keep up to date with cutting edge 

technologies, oil and gas companies are spending huge budgets to buy, lease and up-

grade/maintain supercomputers (e.g., [1]). Dealing with high channel count field data 

processing and velocity estimation, the associated forward modeling and inversion al-

gorithms may require petabytes of RAM and petaflops of computing power. The large 

datasets and high computation requirements are why modern algorithms have to be 

parallel. 

 

Velocity reconstruction with frequency-domain full waveform inversion (FWI) 

([19], [24], [26]) has been actively developing in the last decades. These days, even 3D 

elastic inversion, that may bring the most valuable information to interpreters, seems to 
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be feasible. The most time consuming part of this process is forward modeling per-

formed several times at each iteration. For macro velocity reconstruction, only a few 

low frequency (up to 10 Hz) monochromatic components of the seismic wavefield are 

used. 

 

The common practice is to perform simulation in the time domain ([12], [16], [22]), 

extracting the needed frequencies via Fourier Transform applied on the fly with a Dis-

crete Fourier Transform. Time-domain simulation is usually parallelized over sources 

via MPI, so that each MPI process is independent of the others. Then, within each MPI 

process, parallelization is carried out via OpenMP [9], or MPI through domain decom-

position of the target area, involving exchanges between adjacent subdomains or groups 

of subdomains (e.g., [11] and [18]).  

 

The alternative, 3D frequency-domain modeling becomes feasible with the appear-

ance of computing technology able to operate with big data. Here, we model the wave-

field in the frequency domain only for needed frequencies. There are certain theoretical 

advantages of frequency-domain modeling that might improve the overall efficiency. 

Two different approaches are distinguished, including: direct [17] and iterative ap-

proaches based on a Krylov-type iteration method [21]. The main bottleneck of the first 

one is the necessity to store LU factors of the forward modeling matrix, requiring hun-

dreds of gigabytes of RAM in a 3D case even for the acoustic case. This process can be 

parallelized with MPI via Domain Decomposition (e.g., [4]), decreasing the memory 

requirements per MPI process. However, in big models this involves vast computa-

tional resources, making the method computationally too expensive. Other attempts to 

resolve this issue are based on applying data compression techniques using Hierarchi-

cally Semi-Separable formats for storing data and Low Rank approximation of matrices 

([14], [27]). 

 

The memory requirements of the iterative approach are much more modest, because 

matrix factorization is not performed. However, its indefiniteness in seismic applica-

tions leads to very slow convergence or even divergence of the Krylov-type iteration 

method. Attempts to overcome this issue involve an appropriate preconditioner. In case 

of a 3D elastic simulation, only a few preconditioners have been developed so far ([7], 

[15], [20]). 

 

In this paper, we use our own preconditioner that we briefly introduced in [13]. It is 

a modification for the elastic case of the preconditioner presented in [5] that was de-

signed for simulation of low frequency monochromatic components of a wavefield in 

a 3D acoustic medium. Here we do not illustrate that our method is superior to other 

aforementioned approaches. This is a feasibility study showing that the method is ca-

pable of performing simulation in 3D elastic models of big size at low frequencies 

needed for macro velocity reconstruction with FWI. This is currently only possible us-

ing parallelization that we developed using MPI and OpenMP. 
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2 Iterative Method to Solve a 3D Elastic Equation 

2.1 Statement of the Problem 

We solve the following elastic equation written in the velocity-stress form describing 

propagation of a monochromatic component of the wave in a 3D isotropic heterogene-

ous medium 

 [𝑖𝜔 (
𝜌𝑰𝟑×𝟑 0

0 𝑺𝟔×𝟔
) − ( 0 �̂�

�̂�𝑇 0
)

𝜕

𝜕𝑥
− (

0 �̂�

�̂�𝑇 0
)

𝜕

𝜕𝑦
− 𝛾(𝑧) ( 0 �̂�

�̂�𝑇 0
)

𝜕

𝜕𝑧
] 𝒗 = 𝒇, (1) 

where vector of unknowns 𝒗 comprises nine components. These components include 

the displacement velocities (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) and components of the stress tensor 

(𝜎𝑥𝑥 , 𝜎𝑦𝑦 , 𝜎𝑧𝑧, 𝜎𝑦𝑧 , 𝜎𝑥𝑧 , 𝜎𝑥𝑦). 𝜔 is the real time frequency, 𝜌(𝑥, 𝑦, 𝑧) is the density, 𝑰𝟑×𝟑 

is 3 by 3 identity matrix, 𝑺𝟔×𝟔(𝑥, 𝑦, 𝑧) = (
𝐴 0
0 𝐶

) is 6 by 6 compliance matrix and 

 𝐴 = (
𝑎 −𝑏 −𝑏

−𝑏 𝑎 −𝑏
−𝑏 −𝑏 𝑎

) , 𝐶 = (
𝑐 0 0
0 𝑐 0
0 0 𝑐

) , �̂� = (
1 0 0
0 0 0
0 0 0

0 0 0
0 0 1
0 1 0

) , �̂� =

                             (
0 0 0
0 1 0
0 0 0

0 0 1
0 0 1
1 0 0

) , �̂� = (
0 0 0
0 0 0
0 0 1

0 1 0
1 0 0
0 0 0

). (2) 

Coefficients 𝑎(𝑥, 𝑦, 𝑧), 𝑏(𝑥, 𝑦, 𝑧) and 𝑐(𝑥, 𝑦, 𝑧) are related to the Lame parameters 𝜆 

and 𝜇 as follows 𝑎 =
𝜆+𝜇

𝜇(2𝜇+3𝜆)
, 𝑏 =

𝜆

2𝜇(2𝜇+3𝜆)
, 𝑐 = 𝜇−1. 𝒇 is the right-hand side repre-

senting the seismic source. In our experiments, we consider either a volumetric or ver-

tical point-force source. 𝛾(𝑧) may be either unity or the damping along 𝑧 representing 

the Perfectly Matched Layer (PML) [6].  

Equation (1) is solved in a cuboid domain of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 points. It is assumed that 

this domain includes sponge layers [5] on the horizontal and PML on the vertical 

boundaries (top and bottom) imitating an elastic radiation condition at infinity. The top 

boundary can be also the free surface. Usage of the sponge layers assures the coeffi-

cients of the partial derivatives by x and y are constant matrices. We use this property 

in the next section, applying the Fourier Transform over these coordinates to construct 

our preconditioner. Equation (1) along with the boundary conditions on the outer 

boundaries of the absorbing layers (𝑣𝑧 = 𝜎𝑦𝑧 = 𝜎𝑥𝑧 = 0 on the horizontal and periodic 

conditions on the vertical faces) produce the boundary value problem that we solve by 

means of the Krylov iterations. Their straightforward application does not guarantee 

convergence. This is why in the next section we develop a special preconditioner. 

2.2 Preconditioned Iterative Method 

Denote by 𝐿 the right-hand side operator in equation (1) that is subject to the same 

boundary conditions as the boundary value problem we solve. Let 𝐿0 be the same op-

erator as 𝐿, but with 𝜌(𝑥, 𝑦, 𝑧) = 𝜌0(𝑧), 𝑺𝟔×𝟔(𝑥, 𝑦, 𝑧) = (1 + 𝑖𝛽) ∙ 𝑺𝟎(𝑧), where 
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 𝑺𝟎(𝑧) = (
𝐴0 0
0 𝐶0

) , 𝐴0 = (

𝑎0 −𝑏0 −𝑏0

−𝑏0 𝑎0 −𝑏0

−𝑏0 −𝑏0 𝑎0

) , 𝐶0 = (

𝑐0 0 0
0 𝑐0 0
0 0 𝑐0

) (3) 

and a real positive number 𝛽 < 1 introduces a complex shift by analogy with the shifted 

Laplacian [8]. Functions 𝜌0(𝑧) > 0, 𝑎0(𝑧), 𝑏0(𝑧) and 𝑐0(𝑧) are the averaging of their 

3D counterparts, providing proximity of operators 𝐿 and 𝐿0 to each other. 

We use operator 𝐿0 as the preconditioner and search for solution 𝒗 of the original 

boundary value problem by solving the 2nd kind Fredholm integral equation  

 𝐿𝐿0
−1�̃� = 𝒇 (4) 

with the same boundary conditions as for equation (1). Finally, we compute unknown 

𝒗 by formula 𝒗 = 𝐿0
−1�̃�. Denoting 𝛿𝐿 = 𝐿 − 𝐿0 and substituting it into equation (4) we 

arrive at  

(𝐼 − 𝛿𝐿𝐿0
−1)�̃� = 𝒇,                                     (5) 

where 𝛿𝐿 is the zero-order operator – pointwise multiplication by a matrix. This is valid 

because we consider equation (1) with the compliance matrix. 

We solve equation (5) via a Krylov-type iterative method. From the variety of them, 

we choose the biconjugate gradient stabilized method (BiCGSTAB) [25] because of its 

moderate memory requirements. In principle, other methods of the same type are also 

applicable, for instance IDR [23]. This assumes computing several times per iteration 

(depending on a method) the product of the left-hand side operator of equation (5) by a 

particular vector 𝒘, i.e. computing [𝑤 − 𝛿𝐿𝐿0
−1𝑤]. This process breaks down into three 

computational steps: 

1. first, computing 𝑞1 = 𝐿0
−1𝑤 by solving boundary value problem 𝐿0𝑞1 = 𝑤; 

2. then, computing 𝑞2 = 𝛿𝐿𝑞1, that in the discrete case is a pointwise multiplication of 

a tridiagonal matrix by a vector; 

3. finally, subtracting the two vectors [𝑤 − 𝑞2].  

To solve 𝐿0𝑞1 = 𝑤 we assume that function 𝒘(𝑥, 𝑦, 𝑧) is expanded into a Fourier 

series with respect to the horizontal coordinates with coefficients �̂�(𝑘𝑥, 𝑘𝑦 , 𝑧), where 

𝑘𝑥 and 𝑘𝑦 are the respective spatial frequencies. These coefficients are solutions to the 

boundary value problems for ordinary differential equations (ODEs) 

  [𝑖𝜔 (
𝜌0𝑰𝟑×𝟑 0

0 𝑺𝟎
) − 𝑖𝑘𝑥 ( 0 �̂�

�̂�𝑇 0
) − 𝑖𝑘𝑦 (

0 �̂�

�̂�𝑇 0
) − 𝛾(𝑧) ( 0 �̂�

�̂�𝑇 0
)

𝜕

𝜕𝑧
] �̂� = �̂�, (6) 

with the same boundary conditions as for equation (1) in the z-direction. We solve it 

numerically, applying a finite-difference approximation, that results in a system of lin-

ear algebraic equations (SLAEs) with a banded matrix, whose bandwidth depends on 

the order of the finite-difference scheme. In this case, computation of �̂�(𝑘𝑥 , 𝑘𝑦 , 𝑧) can 

be performed via the 2D Fast Fourier Transform (FFT) and after �̂�(𝑘𝑥, 𝑘𝑦 , 𝑧) are found, 

𝐿0
−1𝒘 can be computed via the inverse 2D FFT. 
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It is worth mentioning, that here we assumed, that solutions to the boundary value 

problems (6) exist. This assumption is partly justified by numerous successful numeri-

cal tests that we’ve carried out. 

3 Parallelization 

The FWI for macro velocity reconstruction involves simulations for different seis-

mic sources at different low frequencies. This means, that in fact, many boundary value 

problems for equation (1) are solved at the same time, each having its own right-hand 

side 𝒇. Since they are solved independently of each other, we solve each one with a 

separate MPI process, assigned to a single node or a group of cluster nodes. This is the 

highest level of our parallelization strategy. There are no communications between 

these MPI processes. Assuming that all computational nodes have similar performance, 

this parallel process scales very well. This is why we do not mention this level of par-

allelization in subsequent tests and consider the case of one seismic source and one 

frequency only. 

Four computational processes including Krylov iteration method, the 2D forward 

and inverse FFTs and solving the boundary value problem for equation (6), mainly 

drive our solver. We decompose the computational domain along one of the horizontal 

coordinates and parallelize these processes via MPI. The main exchanges between the 

MPI processes are while performing FFTs. For computing them, we use the Intel MKL 

library [10] supporting the decomposition along one direction only. In principle, the 

decomposition along the second horizontal dimension may be also applied with minor 

corrections of the code using a 2D FFT realization, supporting this functionality. De-

composition along the z-direction is not that obvious, since this involves solving each 

boundary value problems for equation (6) in parallel. 

Following this strategy, each MPI process would independently solve its own set of 

𝑁𝑥 ∙ 𝑁𝑦 𝑁⁄  (𝑁 – the number of MPI processes) problems. We solve them in a loop, 

parallelized via OpenMP. Schematically, our parallelization strategy is presented in 

Fig. 1. 

 

Fig. 1. Parallelization scheme. 

Below, we present the results of scaling analysis for both MPI and OpenMP. All 

results presented here have been computed on a HPC cluster comprising nodes with 

two Intel® Xeon® E5-2680v4 @ 2400 MHz CPUs and interconnected with 56 Gb FDR 
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InfiniBand HCA. Double precision floating point format has been used in the compu-

tations. This is necessary, when dealing with vectors of huge dimensions, for instance, 

for computing their dot product. As a stopping criterion for the BiCGSTAB, we used a 

10−3 threshold for the relative residual of the L2-norm providing enough accuracy for 

FWI applications. We assume a vertical point-force source as the source type unless 

explicitly stated to be volumetric. 

For our tests, we construct a 2.5D land model (Fig. 2) from the open source 2D 

Marmousi model. It is discretized with a uniform grid of 551 × 700 × 235 points. The 

horizontal cell sizes are 16 m and the vertical cell size is 8 m, corresponding to 5 and 

10 points per minimal wavelength at frequency of 10 Hz respectively. Denser vertical 

sampling is required, because the finite-difference approximation along z-axis is only 

4th order. 

 

Fig. 2. 2.5D P-velocity model of 8.8 × 11.2 × 1.88 km, constructed from the Marmousi model. 

3.1 MPI Strong Scaling Analysis 

MPI strong scalability of the solver is defined as ratio 𝑡𝑀 𝑡𝑁⁄ , where 𝑡𝑀 and 𝑡𝑁 are 

elapsed run times to solve the problem with 𝑁 and 𝑀 > 𝑁 MPI processes each corre-

sponding to a different CPU. Using MPI, we parallelize two types of processes. First, 

those scaling ideally (solving problems (6)), for which the computational time with 𝑁 

processes is 
𝑇

𝑁
. Second, the FFT, that scales as 

𝑇𝐹𝐹𝑇

𝛼(𝑁)
, with coefficient 1 < 𝛼(𝑁) < 𝑁. 

The total computational time becomes 
𝑇

𝑁
+

𝑇𝐹𝐹𝑇

𝛼(𝑁)
 (here we simplify, assuming no need 

of synchronization) with scaling coefficient 
𝑇+𝑇𝐹𝐹𝑇
𝑇

𝑁
+

𝑇𝐹𝐹𝑇
𝛼(𝑁)

, that is greater than 𝛼(𝑁). This is 

why, we expect very good scalability of the algorithm, somewhere between the scala-

bility of the FFT and the ideal scalability. We did not take into account OpenMP, which 

can be switched on for extra speed-up. It is worth noting, that we can not use MPI 

instead of OpenMp here, since then the scaling would degrade. MPI may have worked 

well if 𝑇 ≫ 𝑇𝐹𝐹𝑇 , but this is not the case. 

We estimate the strong scaling for modeling at 5 Hz in two different models. Each 

model comprises 200 × 600 × 155 points. The first one is a subset of the model de-

picted in Fig. 2 with 𝑉𝑝𝑚𝑎𝑥
𝑉𝑝𝑚𝑖𝑛

⁄ = 2.85, 𝑉𝑠𝑚𝑖𝑛
= 867 m/s and the second one is part 
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of the SEG/EAGE overthrust model [2]: 𝑉𝑝𝑚𝑎𝑥
𝑉𝑝𝑚𝑖𝑛

⁄ = 2.75, 𝑉𝑠𝑚𝑖𝑛
= 1258 m/s. Grid 

cells are 30 m. From Fig. 3 we conclude that our solver scales very well up to 64 MPI 

processes. 

 

Fig. 3. Strong MPI scaling of our solver: blue dashed line is the result for the Marmousi model, 

the red line - for the SEG/EAGE overthrust model. The dashed grey line is the ideal scalability. 

3.2 MPI Weak Scaling Analysis 

For weak scaling estimation, we assign the computational domain to one MPI pro-

cess and then extend the size of the computational domain along the y-direction, while 

increasing the number of MPI processes. Here, we use one MPI process per CPU. The 

load per CPU is fixed. For the weak scaling, we use function 𝑓𝑤𝑒𝑎𝑘(𝑁) =
𝑇(𝑁)

𝑇(1)
, where 

𝑇(𝑁) is the average computational runtime per iteration with 𝑁 MPI processes. The 

ideal weak scalability corresponds to 𝑓𝑤𝑒𝑎𝑘(𝑁) = 1. 

To estimate it in our case, we considered a part of the model presented in Fig. 2 of 

size 200 × 25 × 200 points with a decreased 4 m step along the y-coordinate. After 

extending the model in the y-direction 64 times, we arrive at a model of size 200 ×
1600 × 150 points. Fig. 4 demonstrates that for up to 64 MPI processes, weak scaling 

of our solver has small variations around the ideal weak scalability. 

 

Fig. 4. Weak scaling measurements: the blue line is the result of the iterative solver and the 

dashed grey line is the ideal weak scaling. 
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3.3 OpenMp Scaling Analysis 

As already explained above, with OpenMP we parallelize the loop over spatial fre-

quencies for solving the boundary value problems (6). To estimate the scalability of 

this part of our solver, we performed simulations in a small part of the SEG/EAGE 

overthrust model comprising 660 × 50 × 155 points on a single CPU having 14 cores 

with hyper-threading switched off and without using MPI. Fig. 5 shows that our solver 

scales well for all threads involved in this example. 

It is worth mentioning, that we use OpenMP as an extra option applied when further 

increasing of the number of MPI processes doesn’t improve performance any more, but 

the computational system is not fully loaded, i.e., there are free cores. 

 

Fig. 5. Strong scalability analysis on one CPU of the part parallelized via OpenMP: the dashed 

blue line is the ideal scalability and the red line is the iterative solver scalability. 

4 Numerical Experiments 

4.1 Benchmarking 

We verify our solver by comparison to the exact solution in a homogeneous medium. 

A frequency-domain vertical displacement 𝑢𝑧(𝒙, 𝜔) in a homogeneous unbounded me-

dium, resulting from a vertical point-force applied in the origin, has the analytical rep-

resentation [3]: 

 𝑢𝑧(𝒙, 𝜔) =
𝑆(𝜔)𝑒𝑖𝜔𝑟 𝑉𝑝⁄

4𝜋𝜌𝑉𝑝
2𝑟

[𝛾 + (3𝛾 − 1) (−
𝑉𝑝

𝑖𝜔𝑟
) + (3𝛾 − 1) (−

𝑉𝑝

𝑖𝜔𝑟
)

2

] −

                                    
𝑆(𝜔)𝑒𝑖𝜔𝑟 𝑉𝑠⁄

4𝜋𝜌𝑉𝑠
2𝑟

[𝛾 − 1 + (3𝛾 − 1) (−
𝑉𝑠

𝑖𝜔𝑟
) + (3𝛾 − 1) (−

𝑉𝑠

𝑖𝜔𝑟
)

2

], (7) 

where 𝑆(𝜔) is the monochromatic component of the source function, 𝑟 =

√𝑥2 + 𝑦2 + 𝑧2 is the radius vector, 𝑉𝑝 and 𝑉𝑠 are P and S-wave velocities respectively 
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and 𝛾 = (
𝑧

𝑟
)

2

. To get the frequency-domain vertical velocity, we multiply the displace-

ment by 𝑖𝜔 in the Fourier domain (for the derivative): 

 𝑣𝑧(𝒙, 𝜔) = 𝑖𝜔 ∙ 𝑢𝑧(𝒙, 𝜔). (8) 

Our example comprises a volume of size 12 × 12 × 4.5 km filled with constant elas-

tic properties: 𝑉𝑝 = 2600 m/s, 𝑉𝑠 = 1500 m/s and 𝜌 = 2210 kg/m3. This volume is 

discretized using a uniform grid of 60 m in the horizontal directions and 15 m in the 

vertical direction. An analytical solution for vertical velocity is computed for a fre-

quency of 10 Hz using formula (8), assuming that the origin is the middle of the volume. 

To obtain our solver solution, we surround the computational area with absorbing lay-

ers. In Fig. 6 the corresponding solutions along the vertical line 𝑥 = 6400 m and 𝑦 =
3200 m are given, showing good agreement between the results. We compute the root 

mean square (RMS) error in percent 

 RMS= 100 ∙
‖𝑢𝑠𝑜𝑙𝑣𝑒𝑟−𝑢𝑒𝑥𝑎𝑐𝑡‖𝐿2

‖𝑢𝑒𝑥𝑎𝑐𝑡‖𝐿2

, (9) 

with 𝑢𝑒𝑥𝑎𝑐𝑡  and 𝑢𝑠𝑜𝑙𝑣𝑒𝑟  being the exact and solver solutions respectively. In our exam-

ple, the RMS difference is 0.88%. This small error can be reduced by using denser 

vertical sampling or using a higher order finite-difference approximation for solving 

the boundary value problems (6). 

 

Fig. 6. 1D vertical profiles (real part) of 𝑉𝑧 computed in the homogeneous model at receiver 

location x=6400 m, y=3200 m. The exact solution (dashed blue line) overlies our solver solution 

(solid red line) and the residuals (solid green line) are multiplied by 5. 

We compare the convergence rate of our solver to another 3D elastic iterative solver 

– CARP-CG [15]. Generating the solution at 7.5 Hz using the homogeneous model our 

solver converges in 39 iterations in 794 seconds, whereas other solver converges in 

1402 iterations in 1244.42 seconds (these data were taken from Table 9 in [15]). The 

number of cores involved in the computations were the same for both solvers. It is 
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worth mentioning, that the computational time comparison is a bit unfair, since the 

hardware for running these solvers were slightly different. 

4.2 Convergence Analysis in the Marmoussi Model 

To understand how the convergence rate varies with increasing frequency we con-

sider the full 2.5D model depicted in Fig. 2 containing more than 90 million cells. Sim-

ulations were performed at different low frequencies from 2 to 10 Hz, considered a 

sufficient range for macro velocity reconstruction with FWI. From Fig. 7 we infer, that 

for the higher frequencies the convergence is slower. In this particular case, the conver-

gence curve varies around the linear increase with slope 10. It is worth mentioning, that 

pure BiCGSTAB would diverge in such a model (number of iterations > 10000) at any 

of those frequencies. The 10 Hz monochromatic component of the computed wavefield 

is presented in Fig. 8. Using 9 nodes with 7 MPI processes per node and 4 cores per 

process, the total computation time is 348 minutes. 

 

Fig. 7. Convergence versus frequency in the 2.5D Marmousi model: the blue line is the iterative 

solver convergence curve and the dashed grey line is the linear increase with slope 10. 

 

Fig. 8. A 3D view of the real part of a frequency-domain wavefield of the 𝑉𝑧 component computed 

for the model depicted in Fig. 2. 
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5 Conclusions 

We present a parallel iterative solver capable of modeling wavefields in 3D elastic 

land models of big size at low frequencies. The solver includes both MPI and OpenMP 

to reduce the computation time and shows good scalability. Further improvement of 

MPI scaling may be achieved by incorporating domain decomposition along the two 

horizontal directions into the current MPI parallelization scheme. Another strategy, that 

may be also considered, is parallelization using domain decomposition along the verti-

cal direction for solving the boundary value problems for equation 4. 
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