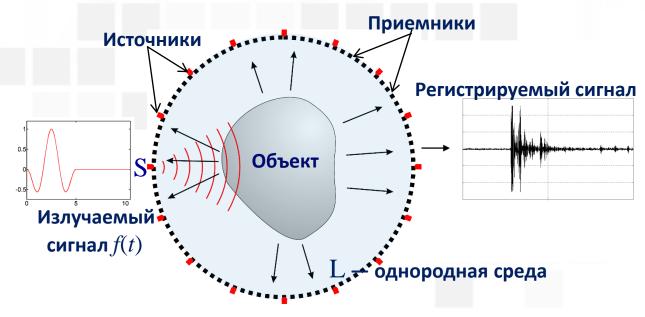

Международная конференция "Суперкомпьютерные дни в России", 24-25 сентября 2018 г.



Исследование сходимости итерационных методов решения обратных задач 3D акустической томографии с помощью суперкомпьютерного моделирования

д.ф.-м.н. Романов С.Ю.


Московский государственный университет им.М.В.Ломоносова, НИВЦ Исследования проведены при поддержке гранта РНФ № 17-11-01065

Ультразвуковая томография. Приложение к медицине

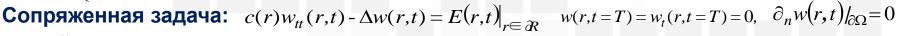
- Более 40 тысяч женщин России ежегодно заболевают раком молочной железы. Доля лиц с поздними стадиями заболевания среди первичных больных превышает 40%.
- Ультразвуковые томографы высокого разрешения позволят осуществлять раннюю диагностику рака.
- Каждое 4-е онкологическое заболевание рак груди.

Постановка задачи волновой томографии

Постановка задачи

Волновое уравнение в области $\Theta \times (0,T) = \Pi$, $\Psi = \partial \Theta \times (0,T)$

$$c(r)u_{tt}(r,t) - \Delta u(r,t) = f(r,t)$$


$$u(r, t = 0) = u_t(r, t = 0) = 0,$$

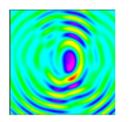
где
$$c(r) \equiv c_0 = const$$
, при $r \Omega_{\varepsilon}$, c_0 - известны.

$$u(r,t) = U(r,t)$$
- известна в $\Gamma_{\delta} = (\Omega)_{\delta} \times (0,T)$

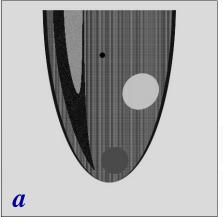
Минимизация невязки: $\Phi(u(c)) = \sum_{j=1}^{M} \frac{1}{2} \int_{0}^{T} \int_{\partial R} E^{2}(s,t) ds dt$

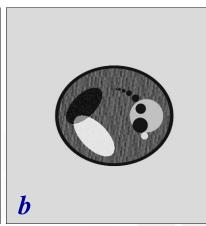
$$E(s,t) = egin{cases} u(s,t) - U(s,t) \text{, для таких } s \in \partial R \text{, где } U(s,t) \text{- измерена} \\ 0 \text{, иначе} \end{cases}$$

В этой постановке эксперим. данные могут отсутствовать на части границы


Можно выписать производную Фреше:

$$\Phi'(u(c),dc) = \sum_{j=1}^{M} \int_{\Omega} \left\{ \left[\int_{0}^{T} w_{t}^{j}(r,t) u_{t}^{j}(r,t) dt \right] dc(r) \right\} dr$$


Можно уменьшить область расчетов, поставив на внутр.границе приближенные условия неотражения 2-ого порядка : $u_{xt} - \frac{1}{v} u_{tt} + \frac{v}{2} u_{yy} = 0$



Модельные расчеты в задаче волновой томографии

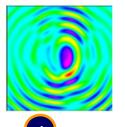
Обратная задача УЗ томографии

Фантом

 $c(r)u_{tt}(r,t) - \Delta u(r,t) = f(r,t)$

 $|\Phi(c) = \frac{1}{2} ||u(c)||_{ST} - U||^2 = \frac{1}{2} \int_{0}^{T} \int_{S} (u(s,t) - U(s,t))^2 ds dt$

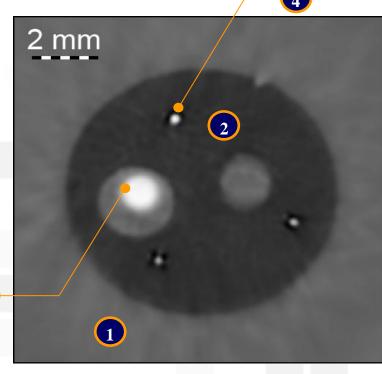
Обратная задача реконструкции 3D скорости *c*(*r*) сводится к минимизации функционала невязки.


U(s,t) — экспериментальные данные, u(s,t;c) - решение прямой задачи распространения волны с заданным c(r).

Получена формула для вычисления градиента функционала невязки, стандартные методы минимизации функционала.

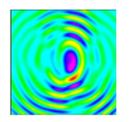
Реконструированное изображение

Апробация на томографическом стенде

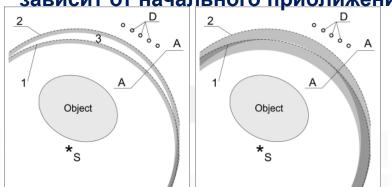


3D модель стенда

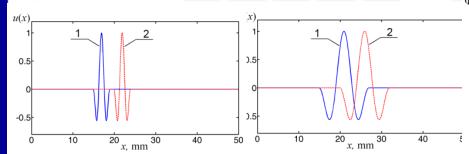
Фотография фрагмента стенда


Стенд для ультразвуковых томографических исследований

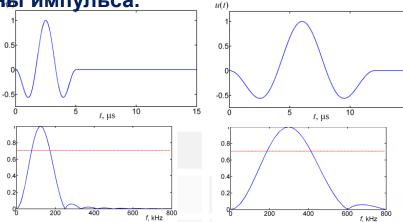
Реконструированное горизонтальное сечение скоростного разреза:


- 1. Вода *c*(*r*)=1,49
- 2. Область пониженной скорости c(r)=1,39
- 3.Область повышенной скорости c(r) = 1,80
- 4. Металлическая игла диаметром 1 мм

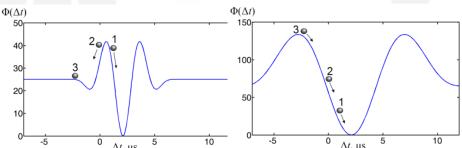
Нелинейность обратной задачи волновой томографии


Сходимость итерационного процесса задачи волновой томографии

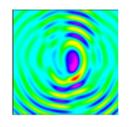
зависит от начального приближения и ширины импульса.

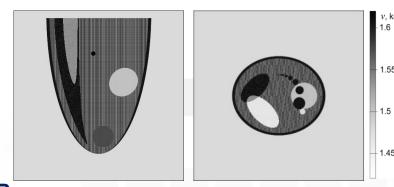


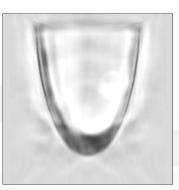
Расположение волновых фронтов зондирующих импульсов при наличии и отсутствии объекта:


a) $\lambda = 5$ mm, b) $\lambda = 12$ mm.

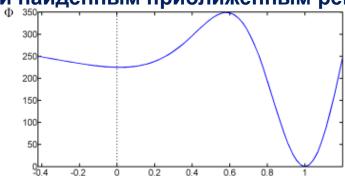
Расположение импульсов при наличии и отсутствии объекта в сечении A-A: а) $\lambda = 5$ мм, b) $\lambda = 12$ мм.




Импульс для $\lambda = 5$ мм (a) и $\lambda = 12$ мм (b) вверху - форма импульса, внизу – спектр

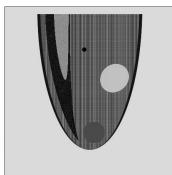

невязка как функция от задержки прихода импульса на линии А–А для различных начальных приближений и для малой и большой ширины импульса

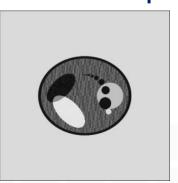
Решение обратной задачи на высокой частоте


Вертикальное и горизонтальное сечение фантома скорости c(r)

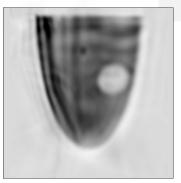
Сечения восстановленной скорости c(r): $\lambda = 5$ мм, начальное приближение $c_0 =$ const

Проведём прямую между точным решением и найденным приближённым решением


Видно, что найденное приближённое решение в данном случае является локальным минимумом.

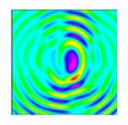

График функционала невязки $\Phi(\alpha)$, $\lambda = 5$ мм

Решение обратной задачи для разной ширины импульса



В силу нелинейности сходимость итерационного процесса зависит от начального приближения и ширины импульса.

Вертикальное и горизонтальное сечение фантома скорости c(r)

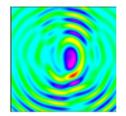

Восстановленные скорость c(r) : $\lambda = 12$ мм, начальное приближение c_0 =const

Восстановленные c(r): $\lambda = 5$ мм, начальное приближение c(r), получены из решения для $\lambda = 12$ мм

Проблема формирования зондирующего импульса

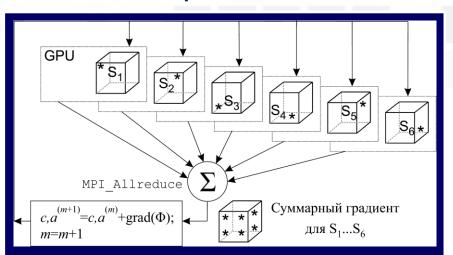
$$c(r)u_{tt}(r,t) - \Delta u(r,t) = \delta(r - r_0) \cdot f(t)$$

$$\Phi(c) = \frac{1}{2} \|u(c)|_{ST} - U\|^2 = \frac{1}{2} \int_0^T \int_S (u(s,t) - U(s,t))^2 ds dt$$


Проблемы:

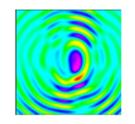
- В обратной задаче предполагаются известными: U(s,t), скорость среды с0, нулевые начальные условия, зондирующий импульс (r0, f(t)).
- импульс определяется: диаграммой направленности, амплитудой, формой волны, затуханием, вариация параметров приемников, погрешности геометрии и т.д.
- Погрешность задания импульса ~5%.

Решение:


- Предварительно проводится эксперимент в однородной среде без объекта для каждого источника.
- По эксперим. данным рассчитываем распространение волны в обратном времени до момента δt>0. Запоминаем два слоя по времени.
- Используем эти слои как начальные условия решения прямой задачи в итерациях

Суперкомпьютерные технологии в ультразвуковой томографии

Разработанные алгоритмы решения обратных задач оптимизированы для расчёта на графических процессорах (GPU).


- *N*³ ≈ 50 млн. неизвестных, *N* ~ 400.
- *t*: ≈1000 шагов времени
- Общая вычислительная сложность для 100 итераций, 50 источников 10¹⁵
- Приемлемое на практике время расчёта-1ч
- Требуемый объём памяти ~ *N*³
- Количество операций ~ №

- распараллеливание по источникам
- обработка трёхмерного массива данных последовательно по оси Z («z-marching» метод),
- обращение к данным в памяти GPU происходит последовательно по двумерным сечениям,
- на каждый мультипроцессор (MP) GPU приходится блок размером 32х4х32 по координатам X,Y,Z.

Схема распараллеливания расчётов на **GPU**

Суперкомпьютерные технологии в ультразвуковой томографии

- реализовано динамическое ограничение расчётной области только той областью, в которой в заданный момент времени могут находиться волны, излучаемые источником
- повышает производительность вычислений на 30-40%.
- в быстрой памяти GPU хранятся данные 2 шагов по времени.
- во внешней памяти данные для границ.

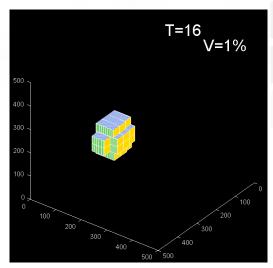


Схема динамического ограничения расчётной области на GPU

- Тестирование проводилось на СК "Ломоносов" и "Ломоносов-2" СКЦ МГУ
- Устройства: NVidia GeForce GTX 660, GTX TITAN, Tesla X2070, Tesla K40s
- сеть QDR Infiniband 40GBit/s
- Время передачи данных (0.5%)
- Интерфейс MPI, OpenCL