



## Трехмерное моделирование медленных течений вокруг недеформируемых структур с использованием FMM/GPU ускоренного МГЭ

### Абрамова Ольга Александровна \*,

Питюк Ю. А.<sup>\*</sup>, Гумеров Н. А.<sup>\*,\*\*</sup>, Ахатов И.Ш.<sup>\*,\*\*\*</sup>

\* Центр Микро- и наномасштабной динамики дисперсных систем, Башкирский Государственный Университет, Уфа

\*\* Institute for Advanced Computer Studies, University of Maryland, USA

\*\*\* Центр Сколтеха по проектированию, производственным технологиям и материалам, Москва

Москва, 2018

#### Мотивация

- Композиционные материалы играют важнейшую роль в авиастроении, ветряной энергетике, автомобилестроении, ракетно-космической технике для решения задач облегчения конструкций при сохранении прочностных характеристик.
- Исследование стоксовых течений имеет большое значение для микрогидродинамики при создании лабораторий-на-чипе, систем диагностики in vitro в микробикологии, при регулировании микропотоков
- большого объема Моделирование динамики дисперсной сложной В среды геометрии необходимо более ДЛЯ точного описания особенностей картины течения и микроструктуры дисперсной среды при различных параметрах.



#### Постановка задачи и математическая модель

**Цель:** разработка и реализация эффективного численного инструмента на основе метода граничных элементов и быстрого метода мультиполей для изучения особенностей трехмерных течений Стокса вокруг недеформируемых неподвижных структур



#### Граничные условия

на границе раздела жидкостей

на боковой поверхности недеформируемых структур

#### Кинематическое условие

Рассматривается течение вязкой жидкости и динамика деформируемых капель одной вязкой жидкости в объеме другой вязкой жидкости при малых числах Рейнольдса в неограниченной области

Движение жидкостей описывается уравнениями Стокса

$$-\nabla p_i + \mu_i \nabla^2 \mathbf{u}_i = 0, \quad \nabla \cdot \mathbf{u}_i = 0, \quad i = 1, 2$$

$$\mathbf{u}_1 = \mathbf{u}_2, \quad \mathbf{f} = \mathbf{\sigma}_1 \cdot \mathbf{n} - \mathbf{\sigma}_2 \cdot \mathbf{n} = \mathbf{f}_1 - \mathbf{f}_2 = f\mathbf{n},$$
  
$$f = 2\gamma k(\mathbf{x}) + (\rho_1 - \rho_2)(\mathbf{g} \cdot \mathbf{x}), \qquad \mathbf{x} \in S_d$$

 $\mathbf{u}(\mathbf{x}) = 0, \qquad \mathbf{x} \in S_s$  $\frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x})$ 

Применение метода граничных элементов<sup>1</sup> позволяет уменьшить размерность рассматриваемой задачи на единицу, поскольку все расчеты связаны только с границей.

<sup>1</sup> *Pozrikidis C.* Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1992

#### Метод граничных элементов Гранично-интегральная формулировка

Граничные интегральные уравнения для жидкости, занимающей объем *V*, ограниченный поверхностью *S*, могут быть записаны в следующем виде<sup>\*</sup>

$$\mathbf{u}(\mathbf{y}) - \int_{S} \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, dS(\mathbf{x}) = \frac{1}{\mu} \int_{S} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \, dS(\mathbf{x}), \qquad \mathbf{y} \in V, \qquad \begin{array}{c} \text{Stokeslet} & \text{Stresslet} \\ (\text{CTOKCLET}) & \downarrow \\ \mathbf{y} = \frac{1}{2} \mathbf{u}(\mathbf{y}) - \int_{S} \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, dS(\mathbf{x}) = \frac{1}{\mu} \int_{S} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \, dS(\mathbf{x}), \qquad \mathbf{y} \in S, \\ - \int_{S} \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, dS(\mathbf{x}) = \frac{1}{\mu} \int_{S} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \, dS(\mathbf{x}), \qquad \mathbf{y} \notin S, V, \qquad \begin{array}{c} \text{Stokeslet} & \text{Stresslet} \\ (\text{CTOKCLET}) & \downarrow \\ \mathbf{y} = \frac{1}{8\pi} \left( \frac{\mathbf{I}}{r} + \frac{\mathbf{rr}}{r^3} \right), \qquad \mathbf{T}(\mathbf{y}, \mathbf{x}) = -\frac{3}{4\pi} \frac{\mathbf{rr}}{r^5}, \\ - \int_{S} \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, dS(\mathbf{x}) = \frac{1}{\mu} \int_{S} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \, dS(\mathbf{x}), \qquad \mathbf{y} \notin S, V, \qquad \mathbf{K}(\mathbf{y}, \mathbf{x}) = \mathbf{T}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{n}(\mathbf{x}), \mathbf{r} = \mathbf{y} - \mathbf{x}, \quad r = |\mathbf{r}|, \end{array}$$

Задача о течении смеси двух вязких жидкостей в неограниченной области вокруг неподвижных недеформируемых структур

$$\begin{array}{c} \mathbf{y} \in \mathbf{V}_1, \quad \mathbf{u}(\mathbf{y}) - 2\mathbf{u}_{\infty}(\mathbf{y}) \\ \mathbf{y} \in \mathbf{V}_2, \quad \lambda \mathbf{u}(\mathbf{y}) \end{array} \right) \qquad 1 \quad \left( \begin{array}{c} \mathbf{y} \in S_d \\ \mathbf{y} \in S_d \end{array} \right)$$

$$\mathbf{y} \in \mathbf{S}, \frac{1+\lambda \cdot \beta(\mathbf{y})}{2} \mathbf{u}(\mathbf{y}) - \mathbf{u}_{\infty}(\mathbf{y}) \bigg\} = -\frac{1}{\mu_1} \int_{S_s} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}_1(\mathbf{x}) \, dS_s(\mathbf{x}) + \mathbf{S} = S_s \cup S_d$$

$$\lambda = \mu_0/\mu_1$$

$$+ \int_{S_d} \left\{ -\frac{1}{\mu_1} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) - (1 - \lambda) \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \right\} dS_d(\mathbf{x}) \qquad \mathbf{f}(\mathbf{x}) = \mathbf{f}_1(\mathbf{x}) - \mathbf{f}_2(\mathbf{x})$$



-1 -1

0 x

-0.5

Задача об обтекании неподвижных структур вязкой жидкостью

$$\mathbf{y} \in \mathbf{V}_{1}, \quad \mathbf{u}(\mathbf{y}) - 2\mathbf{u}_{\infty}(\mathbf{y}) \\ \mathbf{y} \in S_{s}, \frac{1}{2}\mathbf{u}(\mathbf{y}) - \mathbf{u}_{\infty}(\mathbf{y})$$
 =  $-\frac{1}{\mu_{1}} \int_{S_{s}} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}_{1}(\mathbf{x}) \ dS_{s}(\mathbf{x})$ 

Вычисление сингулярных частей поверхностных интегралов производится на основе известных интегральных тождеств для течений Стокса и метода линейных тестовых решений.

Трехмерное моделирование течений вязкой жидкости и жидкости с большим количеством дисперсных включений в областях со сложной геометрией невозможно с применением стандартного МГЭ подхода и требует использования высокопроизводительных вычислений и современных эффективных алгоритмов

• Замена прямого метода решения СЛАУ итерационным (GMRES)

если N – количество неизвестных СЛАУ, то сложность матрично-векторного произведения (МВП)  $O(N^2)$ ,  $O(N^3) \rightarrow O(N_{iter}N^2)$ ,  $N_{iter} \ll N$ 

- ♦ Использование в GMRES модуля МВП без хранения матрицы, реализованного на GPU Необходимая память  $O(N^2) \rightarrow O(N)$  необходимое количество операций  $O(N^2)$ 
  - Ускорение матрично-векторного произведения (МВП) в GMRES, используя гетерогенный быстрый метод мультиполей (FMM)

 $O(N^2) \rightarrow O(NlogN) \sim O(N)$ 

 Применение гетерогенного иерархического FMM в предобуславливателе flexible версии GMRES

 $N_{iter} \rightarrow min$ 

Все это позволяет значительно снизить вычислительную сложность всего алгоритма

 $\mathcal{O}(N^3) \to \mathcal{O}(N_{iter}N) {\sim} \mathcal{O}(N)$ 

#### Тестирование модуля МВП на GPU

$$G_{mn}{}^{ij} = S_n G(x_m - x_n) = \frac{1}{8\pi} S_n \left( \frac{\delta_{ij}}{|x_m - x_n|} - \frac{(x_m{}^i - x_n{}^i)(x_m{}^j - x_n{}^j)}{|x_m - x_n|^3} \right)$$

 $n, m = \overline{1, N},$  i, j = 1, 2, 3,Размер матрицы= $3N \times 3N$ 

$$K_{mn}^{ij} = S_n \mathbf{K} (\mathbf{x}_m - \mathbf{x}_n) = -\frac{3}{4\pi} S_n \frac{(\mathbf{x}_m^{i} - \mathbf{x}_n^{i})(\mathbf{x}_m^{j} - \mathbf{x}_n^{j})}{|\mathbf{x}_m - \mathbf{x}_n|^3} \sum_{k=1}^3 (\mathbf{x}_m^{k} - \mathbf{x}_n^{k}) n_n^{k}$$



# Сравнение времени вычисления МВП для NVIDIA Tesla K20

| М    | Matlab | GPU    | Ускорение |
|------|--------|--------|-----------|
| 1024 | 0.2195 | 0.082  | 26.8      |
| 2048 | 0.7748 | 0.0103 | 75.2      |
| 4096 | 4.7752 | 0.0147 | 324.8     |
| 8192 | 133    | 0.0236 | 5635      |

Возможность решения задач для уравнений Стокса размером до 300000 расчетных узлов на одной рабочей станции

1: 2x Intel Xeon X5660, NVIDIA Tesla C2050 2: 2x Intel Xeon X5660, NVIDIA Tesla K20

## Быстрый Метод Мультиполей (FMM)



Традиционный МГЭ подход  $O(N^2)$ 

FMM МГЭ подход O(N)

Применяется FMM, предложенный в работах<sup>\*\*</sup>, где суммирование фундаментальных решений уравнений Стокса сводится к суммированию фундаментальных решений трехмерного уравнения Лапласа

\*\* *Tornberg A.K., Greengard L.* A fast multipole method for the three-dimensional Stokes equations. 2008 \*\* *Wang H<sup>-</sup> et al* A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations. 2007 \**Gumerov N.A., Duraiswami R.* Fast multipole method for the Helmholtz equation in three dimensions. 2005

### Тестирование гетерогенного FMM для уравнений Стокса



M=15342 капель  $N\sim170$  Размер задачи  $\sim2.5\cdot10^6$  Размер матрицы  $\sim7.5\cdot10^6$ 

За один временной шаг ~ 11 вызовов FMM Вычисление геометрических характеристик: кривизна, нормали, площади

 $\lambda = 1.5, \ 0.25 \le Ca \le 0.5 \ \alpha = 8.8 \cdot 10^{-3} p = 8$ 

Время выполнения одного МВП для ядра **G** в зависимости от размера матрицы



СРU+GPU FMM ~5.1 с MBП GPU ~ 239 с Ускорение ~ 46.8 MBП CPU ~ 2379.3 с Ускорение ~ 466 Формирование

N = 1.048576

иерархической структуры данных на CPU ~1.39 s

Один вызов FMM ~7 с Один шаг по времени ~ 4 мин 100 шагов по времени ~7 ч



Сложность алгоритма O(N)

**CPU** 2x Intel Xeon X5660 **GPU** NVIDIA Tesla K20 8

#### Результаты моделирования



![](_page_8_Figure_2.jpeg)

9

 $N_{\Delta filaments} = 13720$ 

CM I 2 3 4

Общее количество расчетных узлов N=428360 у = 0

![](_page_8_Figure_5.jpeg)

Экспериментальный канал

$$R = 7 \cdot 10^{-4}$$
$$r = 10^{-4}$$
M

![](_page_8_Figure_8.jpeg)

#### Результаты моделирования

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

 $N_{\Delta filaments} = 13720$  Общее количество расчетных узлов N=428360

 Re= 0.45 Результаты представлены в плоскости y = 0 

#### Результаты моделирования

![](_page_10_Figure_1.jpeg)

11

#### Сопоставление с экспериментом

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

 $N_{\Delta filaments} = 1544$  Общее количество расчетных узлов N=2471392 Re= 0.1 n= 666

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_5.jpeg)

![](_page_11_Picture_6.jpeg)

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_9.jpeg)

# Течение вязкой жидкости в канале переменного кругового сечения

отношение глубины расширения к

h

![](_page_12_Figure_1.jpeg)

Taneda S., Visualization of separating Stokes flow. 1979

![](_page_12_Figure_3.jpeg)

13

Режимы течения в пространстве параметров W-K

![](_page_12_Figure_5.jpeg)

# Применение подхода для моделирования течения эмульсий в различных областях

![](_page_13_Figure_1.jpeg)

14

- Сформулирована гранично интегральная формулировка для случая обтекания неподвижных недеформируемых структур. Предложен и протестирован оригинальный алгоритм для решения краевых задач для уравнений Стокса высокой вычислительной сложности. Алгоритм основан на методе граничных элементов, ускоренным как за счет быстрого метода мультиполей, так и за счет использования многоядерных СРU и GPU.
- Продемонстрирована возможность применения реализованного подхода для моделирования трехмерной динамики деформируемых дисперсных включений в объеме вязкой жидкости при обтекании неподвижных недеформируемых структур.
- Проведены численные эксперименты по изучению полей скоростей при обтекании вязкой жидкостью отдельных волокон, а также рассмотрены структуры с двойной пористостью. Проведено сопоставление результатов моделирования с экспериментальными данными, полученными в лабораториях Центра Микро- и наномасштабной динамики дисперсных систем.

# Спасибо за внимание

#### Демонстрационные расчеты

![](_page_16_Figure_1.jpeg)

 $Ca = \mu_1 a G / \gamma \quad N_{\Delta filaments} = 13896 \quad \tilde{t} = \gamma t_{dim} / (\mu_1 a)$ 

## 17

## Верификация результатов

![](_page_17_Figure_1.jpeg)

Сравнение с аналитическим решением для обтекания неподвижной твердой сферы

18

Относительная погрешность f на границе ~1.8 %, *N*=642

 $U_x$ ,  $U_z \sim 0.08$ -0.1%

![](_page_17_Figure_5.jpeg)

## Динамика двух деформируемых капель в сдвиговом потоке

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

![](_page_18_Figure_4.jpeg)

![](_page_18_Figure_5.jpeg)

 $\tilde{t} = 3$ 

$$\lambda = 1$$
  $Ca = 0.05$ 

 $a = a_1 = a_2$ 

Количество вершин на поверхности каждой капли

19

N = 163842

Количество треугольных элементов на поверхности каждой капли

 $N_{\Delta} = 327\ 680$ 

Начальное относительное расположение центров капель

> $\Delta x = 2.4a, \Delta y = 0,$  $\Delta z = 0.7a$

#### Динамика 512 деформируемых капель в сдвиговом потоке

![](_page_19_Picture_1.jpeg)

$$\frac{d\mathbf{x}}{dt} = \mathbf{u}(\mathbf{x}) + \mathbf{w}(\mathbf{x}), \qquad \mathbf{w} \cdot \mathbf{n} = 0, \quad \mathbf{x} \in S ,$$

Численная поправка на тангенциальную составляющую скорости<sup>\*</sup>  $\mathbf{w}^{i} = \frac{N_{\Delta}^{\frac{3}{2}}}{300(1+\lambda)} (\mathbf{I} - \mathbf{n}_{i}\mathbf{n}_{i}) \sum_{j=1}^{N} \left(1 + |2k_{j}|^{\frac{3}{2}}\right) \Delta S_{j} \left(\mathbf{x}^{j} - \mathbf{x}^{i}\right)$ 

\*Loewenberg M., Hinch E. J. Numerical simulation of a concentrated emulsion in shear flow. 1996.

Условие численной устойчивости\*

 $\Delta \tilde{t} \le K \mu_1 \Delta x_{min} / \gamma$ 

 $K \sim 0.1 - 0.2$ ,  $\Delta x_{min}$  – минимальное расстояние между узлами сетки

\**Zinchenko A.Z., Davis R.H.,* An efficient algorithm for hydrodynamical interaction of many deformable drops. 2000

 $\lambda = 2,$   $0.8 \le Ca \le 1.6,$ N = 642,  $\alpha = 1.5 \cdot 10^{-2}$ 

## Обзор состояния проблемы

#### Метод граничных элементов (МГЭ) для уравнений Стокса

- МГЭ формулировка Rallison J.M., Acrivos A., 1978; Pozrikidis C., 1992
- Моделирование деформируемых капель Zinchenko A.Z. и др., 2003

Быстрый метод мультиполей (FMM) для уравнений Стокса Wang H. И др., 2007; Sangani A. И др., 1996

![](_page_20_Figure_5.jpeg)

• недеформируемые границы

• без GPUs

#### Численное моделирование капельных течений в различных областях

Coulliette C., Pozrikidis C., 1998; Roca J.F., Carvalho M.S., 2013; Tsai T.M., Miksis M.J., 1994; Zinchenko A.Z., Davis R.H., 2009

- симметричные области
- ограничен размер задачи

## Настоящая работа

- МГЭ для деформируемых капель
- FMM
- ✤ GPU
- ✤ fGMRES + FMM

Моделирование динамики десятков тысяч деформируемых капель и капельных течений в каналах произвольной формы

## Тестирование гетерогенного FMM для уравнений Стокса

Применяется FMM, предложенный в работах<sup>\*</sup>, где суммирование фундаментальных решений уравнений Стокса сводится к суммированию фундаментальных решений трехмерного уравнения Лапласа

![](_page_21_Figure_2.jpeg)

Время выполнения одного МВП для ядра **G** в зависимости от размера матрицы

Точность МВП для ядра **G** в зависимости от размера матрицы

10<sup>6</sup>

CPU 2x Intel Xeon X5660, 2.8GHz, 12 cores, 12 GB RAMGPU NVIDIA Tesla K20, 448 cores, 5GB, 1.03 Tflops single, 0.515 Tflops double

\**Tornberg A.K., Greengard L.* A fast multipole method for the three-dimensional Stokes equations. 2008 \* *Wang H et al* A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations. 2007

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

From the finest to the coarsest level

Get S-expansion for all nonempty boxes

S-expansion means singular, or multipole, or far field expansion

1. S-exp for Max Level

![](_page_22_Figure_6.jpeg)

2. S-exp for other levels S|S-translations

![](_page_22_Figure_8.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

From the coarsest to the finest level

Get R-expansion for all nonempty boxes

R-expansion means regular, or local, or near field expansion

1. R-exp from S-exp's of the boxes in the neighborhood S|R-translations

![](_page_23_Figure_6.jpeg)

2. R-exp from parent R|R-translations

![](_page_23_Figure_8.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

Evaluate R-expansion for boxes at Max Level Direct summation of sources contribution in the neighborhood of receivers

1. Evaluate R-expansion

![](_page_24_Figure_4.jpeg)

2. Direct summation

![](_page_24_Figure_6.jpeg)

## **FMM** алгоритм

![](_page_25_Picture_1.jpeg)

## Блок-схема гетерогенного алгоритма FMM

![](_page_25_Figure_3.jpeg)

## **FMM алгоритм**

![](_page_26_Picture_1.jpeg)

## Блок-схема гетерогенного алгоритма FMM

![](_page_26_Figure_3.jpeg)

**FMM** 

![](_page_27_Picture_1.jpeg)

a) (5)

![](_page_27_Figure_3.jpeg)

![](_page_27_Figure_4.jpeg)

![](_page_27_Figure_5.jpeg)

![](_page_27_Figure_6.jpeg)

![](_page_27_Figure_7.jpeg)

## **FMM для уравнений Стокса**

Stokeslet factorization

$$\mathbf{v} = \mathbf{f}\frac{1}{r} + (\mathbf{f} \cdot \mathbf{r})\frac{\mathbf{r}}{r^3} = \sum_{k=1}^3 \left[\mathbf{i}_k \frac{f_k}{r} - y_k \nabla_y \frac{f_k}{r}\right] + \nabla_y \frac{(\mathbf{f} \cdot \mathbf{x})}{r}, \qquad \mathbf{r} = \mathbf{y} - \mathbf{x}_k$$

Stresslet factorization

$$\mathbf{v} = -3\frac{\mathbf{r}(\mathbf{u}\cdot\mathbf{r})(\mathbf{n}\cdot\mathbf{r})}{r^5} = \sum_{k=1}^3 \left[ -\mathbf{i}_k \frac{(\mathbf{d}_k \cdot \mathbf{r})}{r^3} + y_k \nabla_y \frac{(\mathbf{d}_k \cdot \mathbf{r})}{r^3} \right] - \nabla_y \frac{(\mathbf{c}\cdot\mathbf{r})}{r^3}$$

$$\mathbf{d}_k = \frac{1}{2}(\mathbf{n}u_k + \mathbf{u}n_k), \qquad \mathbf{c} = \frac{1}{2}[\mathbf{n}(\mathbf{u} \cdot \mathbf{x}) + \mathbf{u}(\mathbf{n} \cdot \mathbf{x})], \qquad \mathbf{r} = \mathbf{y} - \mathbf{x},$$

#### Stokeslet+stresslet factorization

(total 4 FMMs for the Laplace equation for one summation)

$$\mathbf{v} = \sum_{k=1}^{3} \left( \mathbf{i}_{k} \Phi_{k} - y_{k} \nabla_{y} \Phi_{k} \right) + \nabla_{y} \Phi_{0},$$
$$\Phi_{0} = \frac{(\mathbf{f} \cdot \mathbf{x})}{r} - \frac{(\mathbf{c} \cdot \mathbf{r})}{r^{3}}, \ \Phi_{k} = \frac{f_{k}}{r} - \frac{(\mathbf{d}_{k} \cdot \mathbf{r})}{r^{3}}, \ k = 1,2,3$$

\*Wang et al. 2007, Tornberg & Greengard, 2008

# **FMM** алгоритм

![](_page_29_Picture_1.jpeg)

Сравнение времени выполнения МВП прямым методом счета на CPU и на GPU и МВП с применением FMM (CPU/GPU) для стокслетов и стресслетов, p=8.

| N         | Оптималь             | Архитектура | Стокслеты                 |           | Стресслеты                |           |
|-----------|----------------------|-------------|---------------------------|-----------|---------------------------|-----------|
|           | ный l <sub>max</sub> |             | Время<br>вычисления,<br>с | Ускорение | Время<br>вычисления,<br>с | Ускорение |
| 4 096     | 2                    | CPU         | 0.14                      | 1         | 0.08                      | 1         |
|           |                      | GPU         | 0.007                     | 20        | 0.006                     | 13.3      |
|           |                      | FMM CPU/GPU | 0.04                      | 3.5       | 0.035                     | 2.3       |
| 32 768    | 3                    | CPU         | 2.486                     | 1         | 2.18                      | 1         |
|           |                      | GPU         | 0.24                      | 10.4      | 0.23                      | 9.5       |
|           |                      | FMM CPU/GPU | 0.11                      | 22.6      | 0.11                      | 19.8      |
| 262144    | 4                    | CPU         | 147.78                    | 1         | 135.7                     | 1         |
|           |                      | GPU         | 14.5                      | 10.19     | 14.1                      | 9.6       |
|           |                      | FMM CPU/GPU | 0.8                       | 185       | 0.87                      | 156       |
| 1 048 576 | 5                    | CPU         | 2379.3                    | 1         | 2222                      | 1         |
|           |                      | GPU         | 239                       | 9.96      | 225                       | 9.87      |
|           |                      | FMM CPU/GPU | 5.1                       | 466       | 5.3                       | 419.2     |

Разработанный итеративный решатель flexible GMRES\* основывается на использовании FMM пониженной точности в предобуславливателе и позволяет значительно сократить количество итераций

![](_page_30_Figure_2.jpeg)

Расчеты представлены для течения вязкой жидкости в цилиндрическом канале

Размер матрицы 5196 x 5196 FMM\_p\_in=4, FMM\_p\_out=8

Двойное использование гетерогенного FMM как для ускорения матричновекторного произведения, так и для ускорения сходимости итерационного решателя, позволяет моделировать трехмерные течения в каналах произвольных форм.

\*Saad Y. Iterative Methods for Sparse Linear System. 2003

## Алгоритм flexible GMRES

![](_page_31_Figure_1.jpeg)

12. Вычислить 
$$\mathbf{y}_m$$
 минимизацию  $\|\beta \mathbf{e}_1 - \mathbf{H}_m \mathbf{y}\|_2$  и  $\mathbf{x}_0 := \mathbf{x}_0 + \mathbf{V}_m \mathbf{y}_m$ 

13. Вычислить  $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0, \beta := \|\mathbf{r}_0\|_2$ . Продолжать пока  $\beta > \varepsilon_{GMRES}$ .

![](_page_31_Figure_4.jpeg)

![](_page_31_Figure_5.jpeg)

![](_page_31_Figure_6.jpeg)

## Расчет реологических параметров

Тензор напряжений  $\sigma$  для разбавленной эмульсии в сдвиговом потоке  $u_{\infty} = (Gy, 0, 0)$  в декартовой системе координат определяется как<sup>1,\*</sup>

Вклад непрерывной 
$$\sigma_{ij} = -\delta_{ij}p + 2\mu_1 e_{ij} + \alpha \Sigma_{ij}$$
   
фазы  $\Sigma_{ij} = \frac{1}{V_2} \int_{S} \left[ f_i x_j - \mu_1 (1 - \lambda) (u_i n_j + u_j n_i) \right] dS$ ,  $i, j = 1, 2, 3$ .

Зависимость реологических функций от Са для одной капли в сдвиговом потоке

![](_page_32_Figure_4.jpeg)

<sup>1</sup> Batchelor G. K. The stress system in a suspension of force-free particles. 1970/

\*Kennedy M.R, et al Motion and deformation of liquid drops and the rheology of dilute emulsions in simple shear flow. 1994

## Расчет реологических параметров

![](_page_33_Figure_1.jpeg)

\* Ward S.G., Whitmore R.L. Studies of the viscosity and sedimentation of suspensions Part 1. The viscosity of suspension of spherical particles 1950

#### Сравнение значений относительной вязкости для упорядоченной монодисперсной системы

| $\lambda = 1$      | Sangani $\mu_{relative} = 1.30$ | $\lambda = 6.4$    | Pozrikidis $\mu_{rolating} = 1.03$                            |
|--------------------|---------------------------------|--------------------|---------------------------------------------------------------|
| Ca = 0.01          | $\lambda = 0.08,  Ca = 0.4$     | Ca = 0.05          | <b>Pacyeta</b> $\mu_{1}$ $\mu_{2}$ $\mu_{3}$ $\mu_{4}$ = 1.03 |
| $\alpha = 17.96\%$ | Расчеты $\mu_{relative} = 1.29$ | $\alpha = 0.153\%$ | ruciciti prelative – 1.05                                     |

<sup>1</sup> Sangani A.S., Lu W. Effective viscosity of an ordered suspension of small drops, 1987

<sup>2</sup> Pozrikidis C. On the transient motion of ordered suspensions of liquid drops, 1993

## Динамика двух деформируемых капель в сдвиговом потоке и расчет реологических параметров

![](_page_34_Figure_1.jpeg)

Количество вершин на поверхности каждой капли

35

*N* = 163 842

Количество треугольных элементов на поверхности каждой капли

 $N_{\Delta} = 327\ 680$ 

Значения реологических функций для заданных параметров для одной капли в сдвиговом потоке

 $\Sigma_{12} = 0.0853$   $N_1 = 0.0169$  $N_2 = -0.0043$ 

 $\lambda = 1$  Ca = 0.05  $a = a_1 = a_2$ 

Начальное относительное расположение центров капель

$$\Delta x = 2.4a, \Delta y = 0, \Delta z = 0.7a$$

## Расчет реологических параметров для упорядоченной эмульсии

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

![](_page_35_Figure_3.jpeg)

36

= 6.4

= 2

= 1

0.5

 $\lambda = 0.08$ 

![](_page_35_Figure_4.jpeg)

\*Kennedy M.R, et al. Motion and deformation of liquid drops and the rheology of dilute emulsions in simple shear flow. 1994

# Расчет относительной вязкости полидисперсной эмульсии

![](_page_36_Figure_1.jpeg)

<u>Графики относительной вязкости эмульсии, рассчитанные по различным формулам\*</u>  $\alpha \approx 10\%$ 

![](_page_36_Figure_3.jpeg)

\*Pal R. Viscous behavior of concentrated emulsions of two immiscible Newtonian fluids with interfacial tension. 2003

## Верификация результатов Периодическое течение капель эмульсии в цилиндрическом канале

Сравнение для течения жидкости в цилиндрическом канале с аналитическим решением для течения Пуазейля

Относительная погрешность f на границе ~1.9% внутри канала:  $V_r \sim 1.5\%$   $V_z \sim 1.1\%$ 

![](_page_37_Figure_3.jpeg)

Безразмерные параметры

# Сравнение с результатами экспериментов для капель в канале

![](_page_38_Figure_1.jpeg)

<sup>1</sup> Ho B.P., Leal L.G. The creeping motion of liquid drops through a circular tube of comparable diameter, 1975

\* *Hetsroni G., Habel S., Wacholder E.* The flow field in and around a droplet moving axially within a tube, 1970

1.57

1.6 %

2б

1.545

![](_page_38_Figure_4.jpeg)

Сравнение относительной скорости капли <u>*Udr</u></u> в потоке</u>*  $U_{ch}$ Расчеты Погрешность Эксперимент 1a 1.43 1.46 2 % 1.3 % 16 1.44 1.46 2a 1.514 1.56 2.9 %

## Динамика деформируемых капель в канале переменного сечения

![](_page_39_Figure_1.jpeg)

160

# 41

## Динамика деформируемых капель в канале переменного сечения

![](_page_40_Figure_2.jpeg)

## Метод граничных элементов Гранично-интегральная формулировка

Применение метода граничных элементов (МГЭ)<sup>1</sup> позволяет уменьшить размерность рассматриваемой задачи на единицу, поскольку все расчеты связаны только с границей.

Граничные интегральные уравнения для жидкости, занимающей объем *V*, ограниченный поверхностью *S*, могут быть записаны в следующем виде<sup>\*</sup>

$$\mathbf{u}(\mathbf{y}) - \int_{S} \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, dS(\mathbf{x}) = \frac{1}{\mu} \int_{S} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \, dS(\mathbf{x}), \quad \mathbf{y} \in V,$$
  

$$\frac{1}{2} \mathbf{u}(\mathbf{y}) - \int_{S} \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, dS(\mathbf{x}) = \frac{1}{\mu} \int_{S} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \, dS(\mathbf{x}), \quad \mathbf{y} \in S,$$
  

$$- \int_{S} \mathbf{K}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{u}(\mathbf{x}) \, dS(\mathbf{x}) = \frac{1}{\mu} \int_{S} \mathbf{G}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{f}(\mathbf{x}) \, dS(\mathbf{x}), \quad \mathbf{y} \notin S, V,$$
  

$$\mathbf{G}_{ij}(\mathbf{y}, \mathbf{x}) = \frac{1}{8\pi} \left( \frac{\delta_{ij}}{r} + \frac{r_{i}r_{j}}{r^{3}} \right), \quad \mathbf{T}_{ijk}(\mathbf{y}, \mathbf{x}) = -\frac{3}{4\pi} \frac{r_{i}r_{j}r_{k}}{r^{5}}, \quad r_{i} = y_{i} - x_{i}, \quad i, j, k = 1, 2, 3,$$
  

$$\mathbf{K}(\mathbf{y}, \mathbf{x}) = \mathbf{T}(\mathbf{y}, \mathbf{x}) \cdot \mathbf{n}(\mathbf{x})$$
  
Stokeslet  
(стокслет) Stresslet  
(сторесслет)

<sup>1</sup> Pozrikidis C. Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1992

\**Rallison J.M., Acrivos A.* A numerical study of the deformation and burst of a viscous drop in an extensional flow. 1978

# 43

# МГЭ для капель в неограниченной области

· · ( · · )

1 >

$$y \in V_{1}, \quad u(y) - u_{s}(y) \\ y \in V_{2}, \quad \lambda u(y) - u_{s}(y) \\ y \in S, \frac{1+\lambda}{2}u(y) - u_{s}(y) \\ \end{bmatrix} = \int_{S} \left\{ -\frac{1}{\mu} G(y, x) \cdot f(x) - (1 - \lambda) [T(y, x) \cdot n(x)] \cdot u(x) \right\} dS(x) \quad (1) \\ G(y, x) = \frac{1}{8\pi} \left( \frac{I}{r} + \frac{rr}{r^{3}} \right), \quad T(y, x) = -\frac{3}{4\pi} \frac{rrr}{r^{5}}, \\ \mu = \mu_{1}, \quad \lambda = \mu_{2}/\mu_{1}, \quad r = y - x, \quad r = |r|, \\ \int_{S} G(y, x) \cdot n(x) f(x) dS(x) \approx \sum_{i=1}^{N} I_{i}^{(G)}(y) f(x_{i}) \\ \int_{S} [T(y, x) \cdot n(x)] \cdot u(x) dS(x) \approx \sum_{i=1}^{N} I_{i}^{(T)}(y) \cdot u(x_{i}) \\ \end{bmatrix} I_{i}^{(G)}(y) = \int_{S_{i}} G(y, x) \cdot n(x) dS(x), \\ \int_{S} [T(y, x) \cdot n(x)] \cdot u(x) dS(x) \approx \sum_{i=1}^{N} I_{i}^{(T)}(y) \cdot u(x_{i}) \\ \end{bmatrix} I_{i}^{(T)}(y) = \int_{S_{i}} T(y, x) \cdot n(x) dS(x) \\ \end{bmatrix}$$

 $AU = C, (C = U_{\infty} + Bf)$ 

## Оценка погрешности

![](_page_43_Picture_1.jpeg)

#### Оценка погрешности при расчете поля скоростей внутри и вне капли при обтекании ее внешним потоком

 $\mathbf{v_1}$  $\mathbf{v}_2$  $\mathbf{v}_3$ N = 162

 $max|\mathbf{v}_2 - \mathbf{v}_1|$ 

 $max|\mathbf{v}_3 - \mathbf{v}_2|$ 

Размытость

N = 642 N = 2562

 $V_x$ 

0.0773

0.0227

0.29

Абсолютная погрешность

Относительная погрешность

| $V_{z}$ |                                                      | $V_{x}$ | $V_{z}$ |
|---------|------------------------------------------------------|---------|---------|
| 0.0849  | $max \mathbf{v}_2 - \mathbf{v}_1 /max \mathbf{v}_1 $ | 0.0988  | 0.1086  |
| 0.0112  | $max \mathbf{v}_3 - \mathbf{v}_2 /max \mathbf{v}_2 $ | 0.0291  | 0.0144  |
| 0.13    | Размытость                                           | 0.29    | 0.13    |

#### Оценка погрешности при расчете поля скоростей в внутри канала переменного кругового сечения

| <b>v</b> <sub>1</sub> | $\mathbf{v}_2$        | <b>v</b> <sub>3</sub> |  |
|-----------------------|-----------------------|-----------------------|--|
| $N_{\rm A} = 21488$   | $N_{\Lambda} = 34684$ | $N_{\wedge} = 54968$  |  |

Относительная погрешность

#### Абсолютная погрешность

|                                  | $V_{x}$                | $V_{\mathcal{Y}}$     | $V_{Z}$               |
|----------------------------------|------------------------|-----------------------|-----------------------|
| $max \mathbf{v}_2-\mathbf{v}_1 $ | $0.4963 \cdot 10^{-4}$ | $0.167 \cdot 10^{-4}$ | $0.411 \cdot 10^{-4}$ |
| $max \mathbf{v}_3-\mathbf{v}_2 $ | $0.3935 \cdot 10^{-4}$ | $0.085 \cdot 10^{-4}$ | $0.293 \cdot 10^{-4}$ |
| Размытость                       | 0.79                   | 0.5                   | 0.7                   |

|                                                              | $V_x$  | $V_{\mathcal{Y}}$ | $V_{z}$ |
|--------------------------------------------------------------|--------|-------------------|---------|
| $\frac{max \mathbf{v}_2 - \mathbf{v}_1 }{max \mathbf{v}_1 }$ | 0.0086 | 0.003             | 0.0072  |
| $\frac{max \mathbf{v}_3-\mathbf{v}_2 }{max \mathbf{v}_2 }$   | 0.007  | 0.0015            | 0.0051  |
| Размытость                                                   | 0.81   | 0.5               | 0.7     |