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DNS of multiscale transient problems: how to get 
accurate solutions with realistic numbers of grid points 

(generally, DOF)? 

(2) Decrease DOF by using high-order methods 

(1) Use efficient parallel codes low-order methods 

(3) Use parallel codes for high-order methods 
 

For required accuracy: 

Present talk:  use very high-order with (3) 

3D unsteady CFD: n times DOF decrease for x,y,z         n^4 decrease in operation count 



General idea of constructing arbitrary-order accurate multioperators 
formulae (Tolstykh, 1997, Parallel CFD, Manchester) 

Some papers: Tolstykh, JCP(2007,2008), Commun.in Comp.Phys.(2017) 
А.И.Толстых  Компактные и мультиоператорные аппроксимации  высокой 

точности для уравнений в частных производных, М. Наука,2015 
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Existence and  example of construction 

 

• The solvability of the linear system and hence existence and uniqueness 
can be proved if basis operators are compact approximations to  target one 

 

• Consider approximate formula 

 

• Introduce operator 

 

    Form superposition 

 

Fix                            , solve for                               , obtain 

 

Parameters                               can be used to control the properties  
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Multioperators for fluid dynamics. 
Recent version of basis operators with two-point inversions. 

Very high orders, presently up to 36!  (Tolstykh, Commun. In Comp. 
Phys.,2017) 
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Approximate                    by left and right operators 
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Skew-symmetric, approximate derivatives 

Self-adjoint positive, for dissipation 



Phase & Amplitude Errors of 16th & 32nd - order 

schemes with two-diagonal inversions  
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   16th order  Phase errors 



Architecture of multioperarors-based schemes 

 

• Multioperators: specify        . Use preliminary analysis to specify  

                           and                    .     , create  multioperators 

 

•                                                     and 

 

• Conservative scheme (can be put in the form of flux balances) 
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Multidimensional problems: use multioperators for each spatial coordinate 
N-S equations: use any type operators for viscous terms 



Example: smooth solution of the Hopf 
equation 

WENO-5 10th order 16th order 

N error order error order error order 

16 1.3e-2 1.3e-3 1.3e-3 

32 1.2e-3 3.4 6.6e-6 7.7 8.5e-6 7.3 

64 9.5e-5 3.7 5.4e-9 10.3 1.3e-9 12.6 

128 3.3e-6 4.8 4.9e-12 10.1 3.7e-14 15.1 

256 8.7e-8 5.3 8.1e-14 5.9 

10th (M=4) & 16th(M=8) order schemes with two-diagonal 
inversions, C-norm of the solutions errors 
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Benchmark problem (C. Таm), 
  32nd- order scheme with near-optimal values of       

parameters  
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Execution times per time step in 3D case (jets)  
mesh 360x100x100 

Lomonosov sup.comp. 
 

Number 
of proc. 

8 27 64 125 216 360 1000 

Distrib. 
Along 
axes 

2x2x2 3x3x3 4x4x4 5x5x5 6x6x6 6x10x6 10x10x10 

Time per 
time 
step,sec. 

113 27.45 6.34 3.99 2.81 2.81 1.70 

Accelerati
on 

1 4.12 8.94 17.8 28.3 40.3 66.5 



Target problems 

• (I). Steady state problems (smooth meshes are required) 

We are interested in: 

• (II) Unsteady problems requiring long-time integrations with preserving 
high resolution of small scales 

 

• Aeroacoustics  DNS (instability with sound radiation) 

• DNS of turbulence, laminar-turbulent transition 

• 3D unstable vortex wakes generated by landing large aircrafts 

• Atmospheric phenomena (e.g., tornado) 

• Many others 

Using high-order multioperators –based schemes, it is possible 
to catch fine details of flows using the Navier-Stokes equations 
with modest meshes 

 



Direct simulation of unstable subsonic hot 
axisymmetric jets: getting fine details 

• Unsteady Navier-Stokes equations 

• 10th-16th  order multioperators schemes 

   detect 

Fine details of   vortex rings formation,  their 
interactions  and break down, 

describe 

 Sound radiation and its origin 



Cold jet. Axisymmetric formulation. M=0.5 

3d view of the vorticity field (fragment) 



3D hot jet ,   M=0.1 Abs. values of vorticity, 4<x<30.  

Azimuthally modes  
spoil vortex rings 



Spectra examples 

10   ,20  Rd
40   ,20  Rd



Instability of Rankine vortex in compressible gas 
with sound radiation 

• Vorticity : 
 
 
 

• Incompressible case: the velocity field is   exact solution  
which is stable in respect to small perturbations 

• Compressible case:  the velocity field is   exact solution 
but it is  unstable 
 

• The problem: numerical simulation of the instability 
scenario using the Euler equations 
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Time history of pressure pulsations at R=20, M=0.3 

Quadrupole sound radiation 

Phase I 
Multipole 
modes 

Phase II 



 Snapshots of acoustic pressure fields near the vortex  
boundary.  Phase I. 

T=700 T=1380 T=2500 

Phase II 



Using Immersed Boundaries Method. Test: flow about cylinder, 
small Re,  M=0.2 

 
U(x,y) 

U(x,0) 

Dashed: 88x80, markers: 352x320 

Tested options: u=v=0 in cyl., 
forcing outside and inside cyl. 
 
No visible influence on near and 
far fields 

Separation angle 

Re=20 

Length of separ. zone 



IBM. Test: flow about cylinder, Re>40,  M=0.2 

810Re  810Re 

810Re 

Vorticity, Re=400 
810Re 

Spectra at x=-4.9, y=15.2 

Re=100 

Vorticity, 

Re=400 

Strouhal numbers 



Calculations for supersonic flows (M<1.5) are possible 
due to conservative property of multioperators-based 

schemes 

• The schemes can deal with shock-capturing 
calculations . Example: underexpanded supersonic jets. 
Screech effect (upwind propagations of acoustic waves}. 

Sponge zones 



Underexpanded jet, M=1.5. Screech effect. 
Schlieren visualization  (abs of density gradients) of  the flow 

field 



Flows with strong shocks and contacts. Hybrid 

multioperators schemes. 

• Main idea: to get monotone solutions near shocks 
and contacts regions and high-order ones away from 
those regions. 

•               Tools:  

 -- Using flux corrections  (Zalesac, J.Comp.Phys,1979) and/or 

-- Blending high-order and monotone schemes 

 (I.B.Petrov, A.S.Kholodov, Comput. Math. Math. Phys.,1984; 

 M. N. Mikhailovskaya , B. V. Rogov, Comput. Math. Math. Phys., 2012) 

 



High Mach numbers, 16th-order hybrid 

Riemann problems 

Double Mach reflection, M=10 

Shock Contact 

Toro problem, 
  M=198 

Noh problem,  
flow collision, 
M~1000 



Conclusions 

• Using the multioperators approach,  it is possible to create 
desired-order approximations for numerical analysis formulae 

• 10  th –32th - order multioperators-based optimized schemes 
for fluid dynamics were constructed 

• Extremely high accuracy and high resolution was 
demonstrated using benchmark problems 

• The potential for efficient massively parallel calculations does 
exist 

• High fidelity direct NS and Euler calculations of sound 
generation due to flow instabilities were carried out 

• The schemes can deal with shock-capturing calculations 
• Hybrid schemes can be used in the case of strong shocks and 

hypersonic flows 
 
 



Thank you 


