
Comparison of Dimensionality Reduction Schemes for Parallel
Global Optimization Algorithms

Konstantin Barkalov, Vladislav Sovrasov and Ilya Lebedev

Lobachevsky State University of Nizhni Novgorod

25 September 2018
Moscow, Russia

Problem statement

𝜑(𝑦∗) = min{𝜑(𝑦) ∶ 𝑦 ∈ 𝐷},
𝐷 = {𝑦 ∈ ℝ𝑁 ∶ 𝑎𝑖 ≤ 𝑦𝑖 ≤ 𝑏𝑖, 1 ≤ 𝑖 ≤ 𝑁}

𝜑(𝑦) is multiextremal objective function,
which satisfies the Lipschitz condition:

|𝜑(𝑦1) − 𝜑(𝑦2)| ≤ 𝐿‖𝑦1 − 𝑦2‖, 𝑦1, 𝑦2 ∈ 𝐷,

where 𝐿 > 0 is the Lipschitz constant, and
|| ⋅ || denotes 𝑙2 norm in ℝ𝑁 space.

1

Dimension reduction

Peano-type curve 𝑦(𝑥) allows to reduce the dimension of the original problem:
{𝑦 ∈ ℝ𝑁 ∶ −2−1 ⩽ 𝑦𝑖 ⩽ 2−1, 1 ⩽ 𝑖 ⩽ 𝑁} = {𝑦(𝑥) ∶ 0 ⩽ 𝑥 ⩽ 1}

min{𝜑(𝑦) ∶ 𝑦 ∈ 𝐷} = min{𝜑(𝑦(𝑥)) ∶ 𝑥 ∈ [0, 1]}
𝑦(𝑥) is non-smooth function which continuously maps the segment [0, 1] to the

hypercube 𝐷.

2

Properties of the reduced problem

After applying the Peano-type evolvent 𝜑(𝑦(𝑥)) satisfies the uniform Hölder condition:

|𝜑(𝑦(𝑥1)) − 𝜑(𝑦(𝑥2))| ≤ 𝐻|𝑥1 − 𝑥2|
1
𝑁 , 𝑥1, 𝑥2 ∈ [0, 1],

𝜑(𝑦(𝑥)) is non-smooth and has multiple local and global extremums even if 𝜑(𝑦) is
unimodal. The latter problem is caused by loss of the information about 𝑁 -d
neighborhood after the transformation to the 1-d space.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

ϕ

3

Non-univalent evolvent

One can try to recover all preimages of 𝑦 ∈ ℝ𝑁 and make optimization method aware
of their existence1. This allows reducing the effect of growing amount of local minimas
after dimension reduction. According to the theory of Peano-type curves, each 𝑁 -d
point could have up to 2𝑁 preimages. For large 𝑁 such preimages mining would be
expensive.

0.50 0.25 0.00 0.25 0.50
y1

0.50

0.25

0.00

0.25

0.50

y 2

0.0 0.2 0.4 0.6 0.8 1.0
x

1R.G. Strongin. Numerical Methods in Multiextremal Problems (in Russian), 1978 4

Shifted and rotated evolvents

To create a fixed amount of preimages one can use a pre-defined set of different
evolvents. These evolvents could be shifted or rotated versions of the original one. Set
of shifted evolvents2 is theoretically proven to generate at least one pair of close
preimages if their images are close and it performs better than the a set of rotated
curves in that sense.

1.5 1.0 0.5 0.0 0.5 1.0
y1

1.5

1.0

0.5

0.0

0.5

1.0

y 2

0.50 0.25 0.00 0.25 0.50
y1

0.50

0.25

0.00

0.25

0.50

y 2

2Strongin, R.G. Algorithms for multi-extremal mathematical programming problems employing the
set of joint space-filling curves, Journal of Global Optimization 2(4), 357–378, 1992 5

Smooth evolvent

Smooth functions are more predictable for optimizer, so smooth approximation of the
Peano-like 𝑦(𝑥) curve could improve convergence rate 3.

0.50 0.25 0.00 0.25 0.50
y1

0.50

0.25

0.00

0.25

0.50

y 2

3Goryachih, A. A class of smooth modification of space-filling curves for global optimization
problems, NET 2016 6

Basic parallel optimization method

Optimization method generates search sequence {𝑥𝑘} and consists of the following
steps:

Step 1. Sort the search information (one-dimensional points) in increasing order.
Step 2. For each interval (𝑥𝑖−1, 𝑥𝑖) compute quantity 𝑅(𝑖), called characteristic.
Step 3. Choose 𝑝 intervals (𝑥𝑡𝑗−1, 𝑥𝑡𝑗

) with the greatest characteristics and compute
objective 𝜑(𝑦(𝑥𝑘+𝑗)) in points chosen using the decision rule 𝑑:

𝑥𝑘+1+𝑗 = 𝑑(𝑡) ∈ (𝑥𝑡𝑗−1, 𝑥𝑡𝑗
), 𝑗 = 1, 𝑝

Step 4. If 𝑥𝑡𝑗
− 𝑥𝑡𝑗−1 < 𝜀 for one of 𝑗 = 1, 𝑝, stop the method.

Detailed description: Strongin R.G., Sergeyev Ya.D.: Global optimization with non-convex constraints.
Sequential and parallel algorithms (2000), Chapter 7

7

Parallel optimization method with multiple evolvents

Using the multiple mapping allows solving initial problem by parallel solving the
problems

min{𝜑(𝑦𝑠(𝑥)) ∶ 𝑥 ∈ [0, 1]}, 1 ⩽ 𝑠 ⩽ 𝑆
on a set of intervals [0, 1] by the basic method. Each one-dimensional problem is
solved on a separate processor. The trial results at the point 𝑥𝑘 obtained for the
problem being solved by particular processor are interpreted as the results of the trials
in the rest problems (in the corresponding points 𝑥𝑘1 , … , 𝑥𝑘𝑆). In this approach, a
trial at the point 𝑥𝑘 ∈ [0, 1] executed in the framework of the 𝑠-th problem, consists in
the following sequence of operations:

Step 1. Determine the image 𝑦𝑘 = 𝑦𝑠(𝑥𝑘) for the evolvent 𝑦𝑠(𝑥).
Step 2. Inform the rest of processors about the start of the trial execution at the point

𝑦𝑘 (the blocking of the point 𝑦𝑘).
Step 3. Determine the preimages 𝑥𝑘𝑠 ∈ [0, 1], 1 ⩽ 𝑠 ⩽ 𝑆, of the point 𝑦𝑘 and interpret

the trial executed at the point 𝑦𝑘 ∈ 𝐷 as the execution of the trials in the 𝑆
points 𝑥𝑘1 , … , 𝑥𝑘𝑠

Step 4. Inform the rest of processors about the trial results at the point 𝑦𝑘. 8

Parallel optimization method with multiple evolvents

9

Test problems

Generator GKLS was employed to
construct the sets of test problems:

𝑓(𝑥) = { 𝐶𝑖(𝑥), 𝑥 ∈ 𝑆𝑖, 𝑖 ∈ 2, … , 𝑚
‖𝑥 − 𝑇 ‖2 + 𝑡, 𝑥 ∉ 𝑆2, … , 𝑆𝑚

The generator allows to adjust:
▶ the number of local minimas;
▶ the size of the global minima

attraction region;
▶ the space dimension.

10

Cluster environment

The computational experiments have been carried out on the Lobachevsky
supercomputer at State University of Nizhni Novgorod. One node includes 2 Intel

Sandy Bridge E5-2660 2.2 GHz processors and 64 GB RAM.
Each node runs under CentOS 7 Linux with GCC 4.8 compiler and Intel MPI library.

11

Evolvents comparison

0 200 400 600 800 1000 1200 1400
K

0.0

0.2

0.4

0.6

0.8

1.0

P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

Shifted L= 4

Smooth

Minimal 𝑟

0 500 1000 1500 2000
K

0.0

0.2

0.4

0.6

0.8

1.0

P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

Shifted L= 4

Smooth

𝑟 = 5.0

Operating characteristics on GKLS 2d Simple class
12

Evolvents comparison

0 2000 4000 6000 8000 10000 12000 14000 16000
K

0.0

0.2

0.4

0.6

0.8

1.0

P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

Minimal 𝑟

0 5000 10000 15000 20000 25000
K

0.0

0.2

0.4

0.6

0.8

1.0

P

Non-Univalent
Single evolvent
Rotated L= 2

Rotated L= 3

Shifted L= 2

Shifted L= 3

𝑟 = 4.5

Operating characteristics on GKLS 3d Simple class
13

Choice of evolvent for the parallel algorithm

▶ Smooth evolvent is too computational heavy.
▶ Non-univalent evolvent generates large and unpredictable amount of preimages.
▶ Shifted evolvent generates huge amount of auxiliary points to handle additional

constraint.

Table: Averaged number of computations of 𝑔0 and of 𝜑 when solving the problems from
GKLS 3d Simple class using the shifted evolvent

𝐿 𝑐𝑎𝑙𝑐(𝑔0) 𝑐𝑎𝑙𝑐(𝜑) 𝑐𝑎𝑙𝑐(𝑔0)
𝑐𝑎𝑙𝑐(𝜑) ratio

2 96247.9 6840.14 14.07
3 153131.0 7702.82 19.88

14

Results of applying the parallel algorithm

Table: Averaged numbers of iterations executed by the parallel algorithm for solving the test
optimization problems

p 𝑁 = 4 𝑁 = 5
Simple Hard Simple Hard

I 1 cluster node 1 12167 25635 20979 187353

32 328 1268 898 12208
II 4 cluster nodes 1 25312 11103 1472 17009

32 64 913 47 345

III 8 cluster nodes 1 810 4351 868 5697
32 34 112 35 868

15

Results of applying the parallel algorithm

Table: Speedup of parallel computations executed by the parallel algorithm

p 𝑁 = 4 𝑁 = 5
Simple Hard Simple Hard

I 1 cluster node 1 12167(10.58s) 25635(22.26s) 20979(22.78s) 187353(205.83s)

32 37.1(18.03) 20.2(8.55) 23.3(8.77) 15.4(9.68)
II 4 cluster nodes 1 0.5(0.33) 2.3(0.86) 14.3(6.61) 11.0(6.06)

32 190.1(9.59) 28.1(1.08) 446.4(19.79) 543.0(43.60)

III 8 cluster nodes 1 15.0(6.05) 5.9(2.36) 24.2(17.56) 32.9(24.87)
32 357.9(2.36) 228.9(2.64) 582.8(20.96) 793.0(33.89)

16

Conclusions

▶ The smooth evolvent and the non-univalent one demonstrate the best result in
the problems of small dimensionality and can be applied successfully in solving the
problems with the computational costly objective functions.

▶ The shifted evolvents introduce large overhead costs on the execution of the
method due to the requirement to adding an auxiliary constraint. About 95% of
iterations are overhead to fight the auxiliary constraint.

▶ Rotated evolvents perform almost the same as the shifted ones but without
overhead.

▶ Parallel optimization method shows up to 43x speedup on hard 5𝑑 problems when
using a set of rotated evolvents.

17

Q&A

Contacts:

sovrasov.vlad@gmail.com
https://github.com/sovrasov

